forked from Fonotec/PSF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpulsar_live.py
199 lines (159 loc) · 6.81 KB
/
pulsar_live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/usr/bin/env python
import socket
import numpy as np
import matplotlib
matplotlib.use('tkagg')
import matplotlib.pyplot as plt
import ctypes
from time import sleep, time_ns
import multiprocessing as mp
from observation import Observation
dt = 512*64/70e6
live = False # Live? Or just testing?
countmod = 10 # Once per how many packets should the to-plot array be updated?
nbins = 500 # How many bins are to be used for folding?
nlive = 1000 # How many points to plot the live version of?
mixfreq = 403.975 # The default...
nframesinit = int(1/dt) # How long to collect normalization data
MTU = 8900
def mp2np(mp_array):
return np.frombuffer(mp_array.get_obj())
def calc_freqs(mix_freq):
timevoltage = 1/(70e6) # (s), the time of each voltage measurement
timefft = 512*timevoltage # (s), the time of each fft block: of each 512 voltage measurements an fft is taken
dt = timefft * 64 # (s), to reduce the data rate, the sum of 64 ffts is taken
freqstep = (1/timefft)/1e6 # (MHz), the bandwidth of each frequency bin
maxfreq = (mix_freq+21.4) # (MHz)
minfreq = maxfreq-35 # (MHz)
freqs_edges = np.linspace(minfreq, maxfreq, 257) # Frequency bin edges
freqs = (freqs_edges[1:]+freqs_edges[:-1])/2 # Frequency bin centers
return freqs
def data_worker(pipe):
# Waits for the telescope to send some new data and sends it to some pipe
counter = 0
pd_output, p_input = pipe
data = np.zeros(512,dtype=int)
packet_counter = None
while True:
if live:
# get the package of the current time
a = s.recv(MTU)
# save the data in the array
for i in range(1,512):
data[i-1] = int.from_bytes(a[4*(i-1):4*i],byteorder='big')
if data[0] - 1 != packet_counter and packet_counter is not None:
print(f"Missed {data[0]-packet_counter} packets at {packet_counter}")
packet_counter=data[0]
localdata = data[257:] # Throwing lowest freq bin away here. Mostly for convenience, because this way it is consistent with the offline files.
else:
localdata = obs.data[counter]
counter += 1
sleep(1e-4)
p_input.send(localdata)
def fold_worker(pipe_data, livearray, folded_fullynormed):
# Processes the current data packets and does all the folding.
# Updates the arrays containing the data for the plots
pd_output, pd_input = pipe_data
pd_input.close()
newdatapoint = 0
counter = 0
freq_norms = np.zeros(255)
for i in range(nframesinit):
freq_norms += pd_output.recv(MTU)
print(freq_norms, freq_norms.min(), freq_norms.shape)
foldedarray_notnormed = np.zeros(nbins)
folding_norms = np.zeros(nbins)
while True:
tnow = time_ns()/1e6
localdata = pd_output.recv(MTU)
print(time_ns()/1e6-tnow)
counter += 1
time = counter*dt
delay_dispersion = -4.148e3*DM*freq**(-2)
time += delay_dispersion
whichbin = time*nbins/period % nbins
lowernorm = np.ceil(whichbin)-whichbin
highernorm = 1-lowernorm
indexlow = np.array(np.floor(whichbin), dtype=int)
indexhigh = (indexlow + 1) % nbins
#freq_norms += localdata # Maybe this'd be good?
np.add.at(folding_norms, indexlow, lowernorm)
np.add.at(folding_norms, indexhigh, highernorm)
np.add.at(foldedarray_notnormed, indexlow, lowernorm*localdata/freq_norms)
np.add.at(foldedarray_notnormed, indexhigh, highernorm*localdata/freq_norms)
for i in range(0,len(shift)-1):
dmdata[(counter+binshifts[i])%maxshift,i] = localdata[i]/freq_norms[i]
if freq_norms[i] == 0:
print('Hellppp!',i)
newdatapoint += np.sum(dmdata[counter%maxshift,70:200])
# if the current time is a plot time, update the relevant arrays
if counter%countmod==0:
with folded_fullynormed.get_lock():
ffn = mp2np(folded_fullynormed)
ffn[:] = foldedarray_notnormed/folding_norms
with livearray.get_lock():
livearraynp = mp2np(livearray)
livearraynp[:] = np.roll(livearraynp,1)
livearraynp[0] = newdatapoint/countmod
newdatapoint = 0
def plot_worker(tp_live, tp_folded):
# construct a figure
fig, [ax,axfold] = plt.subplots(2,1)
plt.show(False)
ax.set_ylim(0.05,0.08)
ax.set_xlim(0,nlive)
axfold.set_ylim(1/nbins*0.96, 1/nbins*1.1)
axfold.set_xlim(0,nbins)
fig.canvas.draw()
background = fig.canvas.copy_from_bbox(ax.bbox)
background_fold = fig.canvas.copy_from_bbox(axfold.bbox)
# define the x points and construct a plot
#xpoints = range(len(np.log10(data)[256:]))
x_live = np.arange(nlive)
x_folded = np.arange(nbins)
points = ax.plot(x_live,np.ones(nlive)*0.06)[0]
points_folded = axfold.plot(x_folded, np.ones(nbins))[0]
while True:
#print(mp2np(tp_folded)[:5])
#print(mp2np(tp_live))
# plot the current time normalized
y_live = mp2np(tp_live)
points.set_data(x_live,y_live)
y_folded = mp2np(tp_folded)
points_folded.set_data(x_folded,y_folded/y_folded.sum())
fig.canvas.restore_region(background)
fig.canvas.restore_region(background_fold)
ax.draw_artist(points)
axfold.draw_artist(points_folded)
fig.canvas.blit(ax.bbox)
fig.canvas.blit(axfold.bbox)
plt.close(fig)
if __name__ == '__main__':
if live:
pulsar = Pulsar(pulsarname="B0329+54")
DM = pulsar.DM
period = pulsar.apparent_period()
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, proto=socket.PROTOIP_UDP) # construct the socket
s.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, (8*1024*1024)) # May need tweaking.
sinfo = socket.getaddrinfo('0.0.0.0',22102) # get socket info
s.bind(('0.0.0.0',22102)) # bind with the backend
#s.connect(('10.1.2.3',22102))
a = s.recv(MTU) # Test it; receive one package
else:
obs = Observation("data/obs-10-04-2018/B0329+54_10-04-2018-withP.fits.gz")
DM = obs.pulsar.DM
period = obs.pulsar.apparent_period(tobs=obs.obs_middle)
freq = calc_freqs(mixfreq)[1:]
shift = 4.148e3*DM*(1/freq[0]**2 - 1/freq**2)
binshifts = np.rint(shift/dt).astype(int)
sizet = binshifts[-1]
dmdata = np.zeros((sizet,len(shift)))
maxshift = binshifts[-1]
data_pipe = mp.Pipe()
folded_fnormed = mp.Array(ctypes.c_double, nbins)
live_data = mp.Array(ctypes.c_double, nlive)
data_proc = mp.Process(target=data_worker, args=(data_pipe,), daemon=True)
fold_proc = mp.Process(target=fold_worker, args=(data_pipe, live_data, folded_fnormed), daemon=True)
data_proc.start()
fold_proc.start()
plot_worker(live_data, folded_fnormed)