forked from Fonotec/PSF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsound_test.py
executable file
·98 lines (76 loc) · 3.05 KB
/
sound_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#!/usr/bin/env python
import numpy as np
import pygame as pg
import scipy.interpolate as sci
import matplotlib.pyplot as plt
duration = 15.0 # in seconds
sample_rate = int(44100)
bits = 16
frequency_l = 400
frequency_r = 400
normal = False
Folkert = False
Reinier = False
Ewoud = False
ultra = True
ultra2 = True
folded = np.load("data/folded_Huys.npy")
folded = folded - np.min(folded)
folded /= np.max(folded)
folded[:,140:]=0
folded[:,:61]=0
print(len(folded),len(folded[:,0]),len(folded[0,:]))
nu = np.linspace(405+21.4-35,405+21.4,257)
nu = (nu[1:]+nu[:-1])/2
nu = nu[:-1]
time = np.linspace(0,0.745,len(folded))/40
folded[folded<0.6] = 0
f = sci.interp2d(nu,time,folded,kind='linear')
#plt.imshow(folded)
#plt.show()
nufake = nu - nu.min()
nufake /= nufake.max()
nufake *= 2
nufake = 10**nufake
nufake *= 100
def gauss(x,d,mu):
return np.exp(-(x-mu)**2/(2*d**2))
try:
pg.mixer.init(frequency = sample_rate, size = -bits, channels = 2)
Nsamples = int(round(duration*sample_rate))
zeros = np.zeros((Nsamples, 2), dtype = np.int16)
max_sample = 2**(bits - 1) - 1
print(max_sample)
for s in range(Nsamples):
t = float(s)/sample_rate # time in seconds
# left box
if normal:
zeros[s][0] = int(round(max_sample*np.sin(2*np.pi*frequency_l*t)))
zeros[s][1] = int(round(max_sample*np.sin(2*np.pi*frequency_r*t)))
elif Folkert:
zeros[s][0] = int(round(max_sample*np.sin(2*np.pi*frequency_l*t)*gauss(t,.1,.5)))
zeros[s][1] = int(round(max_sample*np.sin(2*np.pi*frequency_r*t)*gauss(t,.1,.5)))
elif Reinier:
zeros[s][0] = int(round(max_sample*np.sin(2*np.pi*frequency_l*(1+gauss(t,.1,.5))*t)))
zeros[s][1] = int(round(max_sample*np.sin(2*np.pi*frequency_r*(1+gauss(t,.1,.5))*t)))
elif Ewoud:
A = max_sample/5
zeros[s][0] = int(round(A*np.sin(2*np.pi*frequency_l*t*.8)*gauss(t,.1,.3)+ A*np.sin(2*np.pi*frequency_l*t*.9)*gauss(t,.1,.4) + A*np.sin(2*np.pi*frequency_l*t)*gauss(t,.1,.5) + A*np.sin(2*np.pi*frequency_l*t*1.1)*gauss(t,.1,.6)+A*np.sin(2*np.pi*frequency_l*t*1.2)*gauss(t,.1,.7)))
zeros[s][1] = int(round(A*np.sin(2*np.pi*frequency_r*t*.8)*gauss(t,.1,.3)+ A*np.sin(2*np.pi*frequency_r*t*.9)*gauss(t,.1,.4) + A*np.sin(2*np.pi*frequency_r*t)*gauss(t,.1,.5) + A*np.sin(2*np.pi*frequency_r*t*1.1)*gauss(t,.1,.6)+A*np.sin(2*np.pi*frequency_r*t*1.2)*gauss(t,.1,.7)))
elif ultra:
A = max_sample/5
zeros[s][0] = int(round( np.sum(A*np.sin(2*np.pi*nufake*t) * f(nu,t%(0.745/40)) ) )) # *np.exp(nufake/1e4)
zeros[s][1] = zeros[s][0]
elif ultra2:
A = max_sample/25
zeros[s][0] = int(round( (A*np.sum(f(nu,t%0.745))-20000)*np.sin(2*np.pi*440*t) ) ) # *np.exp(nufake/1e4)
zeros[s][1] = zeros[s][0]
print(zeros)
sound = pg.sndarray.make_sound(zeros)
sound.play()
pg.time.wait(int(round(1000*duration)))
finally:
pg.mixer.quit()
import matplotlib.pyplot as plt
plt.plot(zeros)
plt.show()