-
Notifications
You must be signed in to change notification settings - Fork 784
/
utils.py
208 lines (156 loc) · 6.43 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import os
import xml.etree.ElementTree as ET
import tensorflow as tf
import copy
import cv2
class BoundBox:
def __init__(self, xmin, ymin, xmax, ymax, c = None, classes = None):
self.xmin = xmin
self.ymin = ymin
self.xmax = xmax
self.ymax = ymax
self.c = c
self.classes = classes
self.label = -1
self.score = -1
def get_label(self):
if self.label == -1:
self.label = np.argmax(self.classes)
return self.label
def get_score(self):
if self.score == -1:
self.score = self.classes[self.get_label()]
return self.score
class WeightReader:
def __init__(self, weight_file):
self.offset = 4
self.all_weights = np.fromfile(weight_file, dtype='float32')
def read_bytes(self, size):
self.offset = self.offset + size
return self.all_weights[self.offset-size:self.offset]
def reset(self):
self.offset = 4
def bbox_iou(box1, box2):
intersect_w = _interval_overlap([box1.xmin, box1.xmax], [box2.xmin, box2.xmax])
intersect_h = _interval_overlap([box1.ymin, box1.ymax], [box2.ymin, box2.ymax])
intersect = intersect_w * intersect_h
w1, h1 = box1.xmax-box1.xmin, box1.ymax-box1.ymin
w2, h2 = box2.xmax-box2.xmin, box2.ymax-box2.ymin
union = w1*h1 + w2*h2 - intersect
return float(intersect) / union
def draw_boxes(image, boxes, labels):
image_h, image_w, _ = image.shape
for box in boxes:
xmin = int(box.xmin*image_w)
ymin = int(box.ymin*image_h)
xmax = int(box.xmax*image_w)
ymax = int(box.ymax*image_h)
cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (0,255,0), 3)
cv2.putText(image,
labels[box.get_label()] + ' ' + str(box.get_score()),
(xmin, ymin - 13),
cv2.FONT_HERSHEY_SIMPLEX,
1e-3 * image_h,
(0,255,0), 2)
return image
def decode_netout(netout, anchors, nb_class, obj_threshold=0.3, nms_threshold=0.3):
grid_h, grid_w, nb_box = netout.shape[:3]
boxes = []
# decode the output by the network
netout[..., 4] = _sigmoid(netout[..., 4])
netout[..., 5:] = netout[..., 4][..., np.newaxis] * _softmax(netout[..., 5:])
netout[..., 5:] *= netout[..., 5:] > obj_threshold
for row in range(grid_h):
for col in range(grid_w):
for b in range(nb_box):
# from 4th element onwards are confidence and class classes
classes = netout[row,col,b,5:]
if np.sum(classes) > 0:
# first 4 elements are x, y, w, and h
x, y, w, h = netout[row,col,b,:4]
x = (col + _sigmoid(x)) / grid_w # center position, unit: image width
y = (row + _sigmoid(y)) / grid_h # center position, unit: image height
w = anchors[2 * b + 0] * np.exp(w) / grid_w # unit: image width
h = anchors[2 * b + 1] * np.exp(h) / grid_h # unit: image height
confidence = netout[row,col,b,4]
box = BoundBox(x-w/2, y-h/2, x+w/2, y+h/2, confidence, classes)
boxes.append(box)
# suppress non-maximal boxes
for c in range(nb_class):
sorted_indices = list(reversed(np.argsort([box.classes[c] for box in boxes])))
for i in range(len(sorted_indices)):
index_i = sorted_indices[i]
if boxes[index_i].classes[c] == 0:
continue
else:
for j in range(i+1, len(sorted_indices)):
index_j = sorted_indices[j]
if bbox_iou(boxes[index_i], boxes[index_j]) >= nms_threshold:
boxes[index_j].classes[c] = 0
# remove the boxes which are less likely than a obj_threshold
boxes = [box for box in boxes if box.get_score() > obj_threshold]
return boxes
def compute_overlap(a, b):
"""
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
Parameters
----------
a: (N, 4) ndarray of float
b: (K, 4) ndarray of float
Returns
-------
overlaps: (N, K) ndarray of overlap between boxes and query_boxes
"""
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
iw = np.minimum(np.expand_dims(a[:, 2], axis=1), b[:, 2]) - np.maximum(np.expand_dims(a[:, 0], 1), b[:, 0])
ih = np.minimum(np.expand_dims(a[:, 3], axis=1), b[:, 3]) - np.maximum(np.expand_dims(a[:, 1], 1), b[:, 1])
iw = np.maximum(iw, 0)
ih = np.maximum(ih, 0)
ua = np.expand_dims((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), axis=1) + area - iw * ih
ua = np.maximum(ua, np.finfo(float).eps)
intersection = iw * ih
return intersection / ua
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def _interval_overlap(interval_a, interval_b):
x1, x2 = interval_a
x3, x4 = interval_b
if x3 < x1:
if x4 < x1:
return 0
else:
return min(x2,x4) - x1
else:
if x2 < x3:
return 0
else:
return min(x2,x4) - x3
def _sigmoid(x):
return 1. / (1. + np.exp(-x))
def _softmax(x, axis=-1, t=-100.):
x = x - np.max(x)
if np.min(x) < t:
x = x/np.min(x)*t
e_x = np.exp(x)
return e_x / e_x.sum(axis, keepdims=True)