Skip to content

Latest commit

 

History

History
294 lines (232 loc) · 10.4 KB

README.md

File metadata and controls

294 lines (232 loc) · 10.4 KB

CRAN_Status_Badge Travis-CI Build Status Coverage Status Cranlogs Downloads

Introduction

The ecb package package provides an R interface to the European Central Bank’s Statistical Data Warehouse.

To install the development version:

library(devtools)
install_github("expersso/ecb")

Example usage

The following example extracts the last twelve observations of headline and “core” HICP inflation for a number of countries available in the ICP database. See details below on how to use the filter parameter and how to find and use the SDW series keys.

library(ecb)
library(ggplot2)

key <- "ICP.M.DE+FR+ES+IT+NL+U2.N.000000+XEF000.4.ANR"
filter <- list(lastNObservations = 12, detail = "full")

hicp <- get_data(key, filter)

hicp$obstime <- convert_dates(hicp$obstime)

ggplot(hicp, aes(x = obstime, y = obsvalue, color = title)) +
  geom_line() +
  facet_wrap(~ref_area, ncol = 3) +
  theme_bw(8) +
  theme(legend.position = "bottom") +
  labs(x = NULL, y = "Percent per annum\n", color = NULL,
       title = "HICP - headline and core\n")

Details

The filter option

The filter option of get_data() takes a named list of key-value pairs. If left blank, it returns all data for the current version.

Available filter parameters:

  • startPeriod & endPeriod
    • YYYY for annual data (e.g. 2013)
    • YYYY-S[1-2] for semi-annual data (e.g. 2013-S1)
    • YYYY-Q[1-4] for quarterly data (e.g. 2013-Q1)
    • YYYY-MM for monthly data (e.g. 2013-01)
    • YYYY-W[01-53] for weekly data (e.g. 2013-W01)
    • YYYY-MM-DD for daily data (e.g. 2013-01-01)
  • updatedAfter
    • A timestamp to retrieve the latest version of changed values in the database since a certain point in time
    • Example: filter = list(updatedAfter = 2009-05-15T14:15:00+01:00)
  • firstNObservations & lastNObservations
    • Example: filter = list(firstNObservations = 12) retrieves the first 12 observations of all specified series
  • detail
    • Possible options: full/dataonly/serieskeysonly/nodata
    • dataonly is the default
    • Use serieskeysonly or nodata to list series that match a certain query, without returning the actual data
    • An alternative to using serieskeys/nodata is the convenience function get_dimensions(), which returns a list of dataframes with dimensions and explanations (see extended example below).
    • full returns both the series values and all metadata. This entails retrieving much more data than with the dataonly option.
  • includeHistory (not currently implemented)
    • false (default) returns only version currently in production
    • true returns version currently in production, as well as all previous versions

See the SDW API for more details.

Using SDW keys

The easiest way to find and learn more about SDW series key is to browse the SDW website. After finding the series one is interested in, and applying the relevant filters (frequency, geographic area, etc), one can just copy the key:

screenshot

The SDW website also has provides all the necessary metadata, so it is much easier to explore data availability (in terms of available breakdowns, time periods, etc) directly on the website than it is to do it directly through the ecb package.

The ecb package supports using wildcards in the series key, which takes the form of simply leaving the wildcard dimension empty. For example, the key ICP.M.DE.N.000000.4.ANR retrieves HICP data for Germany (DE), while leaving the third dimension empty - ICP.M..N.000000.4.ANR - retrieves the same data for all available countries and country groups.

Instead of wildcarding, one can use the + operator to specify multiple values for a dimension. For example, ICP.M.DE.N.000000+XEF000.4.ANR retrieves both headline inflation (000000) and core inflation (XEF000). Learning that e.g. XEF000 corresponds to core inflation would be done by browsing the SDW website:

screenshot2

To remind oneself of what different values for different dimensions mean, one can use the get_dimensions) function, which returns a list of dataframes:

dims <- get_dimensions("ICP.M.DE.N.000000+XEF000.4.ANR")
head(dims[[1]], 8)
##               dim                    value
## 1            FREQ                        M
## 2        REF_AREA                       DE
## 3      ADJUSTMENT                        N
## 4        ICP_ITEM                   XEF000
## 5 STS_INSTITUTION                        4
## 6      ICP_SUFFIX                      ANR
## 7       UNIT_MULT                        0
## 8       DATA_COMP 000000 - ERGY00 - FOOD00

Extended example

As a more extended example, we will retrieve data to plot the annual change in wages against the annual change in unemployment. Economic theory suggests a negative relationship between these two variables.

We start by retrieving the two series, using wildcards for the geographic area dimension:

unemp <- get_data("LFSI.M..S.UNEHRT.TOTAL0.15_74.T", 
                 filter = list(startPeriod = "2000"))

wages <- get_data("MNA.A.N..W2.S1.S1._Z.COM_HW._Z._T._Z.IX.V.N", 
                 filter = list(startPeriod = "2000"))

head(unemp)
## # A tibble: 6 x 9
##   freq  ref_area adjustment lfs_indicator lfs_breakdown age_breakdown gender
##   <chr> <chr>    <chr>      <chr>         <chr>         <chr>         <chr> 
## 1 M     AT       S          UNEHRT        TOTAL0        15_74         T     
## 2 M     AT       S          UNEHRT        TOTAL0        15_74         T     
## 3 M     AT       S          UNEHRT        TOTAL0        15_74         T     
## 4 M     AT       S          UNEHRT        TOTAL0        15_74         T     
## 5 M     AT       S          UNEHRT        TOTAL0        15_74         T     
## 6 M     AT       S          UNEHRT        TOTAL0        15_74         T     
## # ... with 2 more variables: obstime <chr>, obsvalue <dbl>
head(wages)
## # A tibble: 6 x 16
##   freq  adjustment ref_area counterpart_area ref_sector counterpart_sec~
##   <chr> <chr>      <chr>    <chr>            <chr>      <chr>           
## 1 A     N          AT       W2               S1         S1              
## 2 A     N          AT       W2               S1         S1              
## 3 A     N          AT       W2               S1         S1              
## 4 A     N          AT       W2               S1         S1              
## 5 A     N          AT       W2               S1         S1              
## 6 A     N          AT       W2               S1         S1              
## # ... with 10 more variables: accounting_entry <chr>, sto <chr>,
## #   instr_asset <chr>, activity <chr>, expenditure <chr>, unit_measure <chr>,
## #   prices <chr>, transformation <chr>, obstime <chr>, obsvalue <dbl>

To get a human-readable description of a series:

desc <- head(get_description("LFSI.M..S.UNEHRT.TOTAL0.15_74.T"), 3)
strwrap(desc, width = 80)
## [1] "Netherlands; European Labour Force Survey; Unemployment rate; Total; Age 15 to"
## [2] "74; Total; Seasonally adjusted, not working day adjusted"                      
## [3] "Poland; European Labour Force Survey; Unemployment rate; Total; Age 15 to 74;" 
## [4] "Total; Seasonally adjusted, not working day adjusted"                          
## [5] "Euro area (Member States and Institutions of the Euro Area) changing"          
## [6] "composition; European Labour Force Survey; Unemployment rate; Total; Age 15 to"
## [7] "74; Total; Seasonally adjusted, not working day adjusted"

We now join together the two data sets:

library(dplyr)
## 
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
## 
##     filter, lag

## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(lubridate)
## 
## Attaching package: 'lubridate'

## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
unemp <- unemp %>% 
  mutate(obstime = convert_dates(obstime)) %>% 
  group_by(ref_area, obstime = year(obstime)) %>% 
  summarise(obsvalue = mean(obsvalue)) %>%
  ungroup() %>% 
  select(ref_area, obstime, "unemp" = obsvalue)
## `summarise()` regrouping output by 'ref_area' (override with `.groups` argument)
wages <- wages %>% 
  mutate(obstime = as.numeric(obstime)) %>% 
  select(ref_area, obstime, "wage" = obsvalue)

df <- left_join(unemp, wages)
## Joining, by = c("ref_area", "obstime")
head(df)
## # A tibble: 6 x 4
##   ref_area obstime unemp  wage
##   <chr>      <dbl> <dbl> <dbl>
## 1 AT          2000  3.89  67.0
## 2 AT          2001  4.01  68.3
## 3 AT          2002  4.39  69.9
## 4 AT          2003  4.78  71.5
## 5 AT          2004  5.49  72.6
## 6 AT          2005  5.64  74.7

Finally, we plot the annual change in wages against the annual change in unemployment for all countries:

library(ggplot2)

df %>% 
  filter(complete.cases(.)) %>% 
  group_by(ref_area) %>% 
  mutate(d_wage = c(NA, diff(wage)) / lag(wage),
         d_unemp = c(NA, diff(unemp))) %>% 
  ggplot(aes(x = d_unemp, y = d_wage)) +
  geom_point() +
  facet_wrap(~ref_area, scales = "free") +
  theme_bw(8) +
  theme(strip.background = element_blank()) +
  geom_smooth(method = "lm") +
  labs(x = "\nAnnual change in unemployment", y = "Annual change in wages\n",
       title = "Relationship between wages and unemployment\n")
## `geom_smooth()` using formula 'y ~ x'

Disclaimer

This package is in no way officially related to, or endorsed by, the ECB.