forked from huggingface/pytorch-image-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validate.py
executable file
·464 lines (404 loc) · 19.3 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#!/usr/bin/env python3
""" ImageNet Validation Script
This is intended to be a lean and easily modifiable ImageNet validation script for evaluating pretrained
models or training checkpoints against ImageNet or similarly organized image datasets. It prioritizes
canonical PyTorch, standard Python style, and good performance. Repurpose as you see fit.
Hacked together by Ross Wightman (https://github.com/rwightman)
"""
import argparse
import csv
import glob
import json
import logging
import os
import time
from collections import OrderedDict
from contextlib import suppress
from functools import partial
import torch
import torch.nn as nn
import torch.nn.parallel
from timm.data import create_dataset, create_loader, resolve_data_config, RealLabelsImagenet
from timm.layers import apply_test_time_pool, set_fast_norm
from timm.models import create_model, load_checkpoint, is_model, list_models
from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_fuser, \
decay_batch_step, check_batch_size_retry, ParseKwargs
try:
from apex import amp
has_apex = True
except ImportError:
has_apex = False
has_native_amp = False
try:
if getattr(torch.cuda.amp, 'autocast') is not None:
has_native_amp = True
except AttributeError:
pass
try:
from functorch.compile import memory_efficient_fusion
has_functorch = True
except ImportError as e:
has_functorch = False
has_compile = hasattr(torch, 'compile')
_logger = logging.getLogger('validate')
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation')
parser.add_argument('data', nargs='?', metavar='DIR', const=None,
help='path to dataset (*deprecated*, use --data-dir)')
parser.add_argument('--data-dir', metavar='DIR',
help='path to dataset (root dir)')
parser.add_argument('--dataset', metavar='NAME', default='',
help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)')
parser.add_argument('--split', metavar='NAME', default='validation',
help='dataset split (default: validation)')
parser.add_argument('--dataset-download', action='store_true', default=False,
help='Allow download of dataset for torch/ and tfds/ datasets that support it.')
parser.add_argument('--model', '-m', metavar='NAME', default='dpn92',
help='model architecture (default: dpn92)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--in-chans', type=int, default=None, metavar='N',
help='Image input channels (default: None => 3)')
parser.add_argument('--input-size', default=None, nargs=3, type=int,
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
parser.add_argument('--use-train-size', action='store_true', default=False,
help='force use of train input size, even when test size is specified in pretrained cfg')
parser.add_argument('--crop-pct', default=None, type=float,
metavar='N', help='Input image center crop pct')
parser.add_argument('--crop-mode', default=None, type=str,
metavar='N', help='Input image crop mode (squash, border, center). Model default if None.')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--num-classes', type=int, default=None,
help='Number classes in dataset')
parser.add_argument('--class-map', default='', type=str, metavar='FILENAME',
help='path to class to idx mapping file (default: "")')
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
parser.add_argument('--log-freq', default=10, type=int,
metavar='N', help='batch logging frequency (default: 10)')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--num-gpu', type=int, default=1,
help='Number of GPUS to use')
parser.add_argument('--test-pool', dest='test_pool', action='store_true',
help='enable test time pool')
parser.add_argument('--no-prefetcher', action='store_true', default=False,
help='disable fast prefetcher')
parser.add_argument('--pin-mem', action='store_true', default=False,
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--channels-last', action='store_true', default=False,
help='Use channels_last memory layout')
parser.add_argument('--device', default='cuda', type=str,
help="Device (accelerator) to use.")
parser.add_argument('--amp', action='store_true', default=False,
help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
parser.add_argument('--amp-dtype', default='float16', type=str,
help='lower precision AMP dtype (default: float16)')
parser.add_argument('--amp-impl', default='native', type=str,
help='AMP impl to use, "native" or "apex" (default: native)')
parser.add_argument('--tf-preprocessing', action='store_true', default=False,
help='Use Tensorflow preprocessing pipeline (require CPU TF installed')
parser.add_argument('--use-ema', dest='use_ema', action='store_true',
help='use ema version of weights if present')
parser.add_argument('--fuser', default='', type=str,
help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')")
parser.add_argument('--fast-norm', default=False, action='store_true',
help='enable experimental fast-norm')
parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs)
scripting_group = parser.add_mutually_exclusive_group()
scripting_group.add_argument('--torchscript', default=False, action='store_true',
help='torch.jit.script the full model')
scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor',
help="Enable compilation w/ specified backend (default: inductor).")
scripting_group.add_argument('--aot-autograd', default=False, action='store_true',
help="Enable AOT Autograd support.")
parser.add_argument('--results-file', default='', type=str, metavar='FILENAME',
help='Output csv file for validation results (summary)')
parser.add_argument('--results-format', default='csv', type=str,
help='Format for results file one of (csv, json) (default: csv).')
parser.add_argument('--real-labels', default='', type=str, metavar='FILENAME',
help='Real labels JSON file for imagenet evaluation')
parser.add_argument('--valid-labels', default='', type=str, metavar='FILENAME',
help='Valid label indices txt file for validation of partial label space')
parser.add_argument('--retry', default=False, action='store_true',
help='Enable batch size decay & retry for single model validation')
def validate(args):
# might as well try to validate something
args.pretrained = args.pretrained or not args.checkpoint
args.prefetcher = not args.no_prefetcher
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
device = torch.device(args.device)
# resolve AMP arguments based on PyTorch / Apex availability
use_amp = None
amp_autocast = suppress
if args.amp:
if args.amp_impl == 'apex':
assert has_apex, 'AMP impl specified as APEX but APEX is not installed.'
assert args.amp_dtype == 'float16'
use_amp = 'apex'
_logger.info('Validating in mixed precision with NVIDIA APEX AMP.')
else:
assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).'
assert args.amp_dtype in ('float16', 'bfloat16')
use_amp = 'native'
amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
_logger.info('Validating in mixed precision with native PyTorch AMP.')
else:
_logger.info('Validating in float32. AMP not enabled.')
if args.fuser:
set_jit_fuser(args.fuser)
if args.fast_norm:
set_fast_norm()
# create model
in_chans = 3
if args.in_chans is not None:
in_chans = args.in_chans
elif args.input_size is not None:
in_chans = args.input_size[0]
model = create_model(
args.model,
pretrained=args.pretrained,
num_classes=args.num_classes,
in_chans=in_chans,
global_pool=args.gp,
scriptable=args.torchscript,
**args.model_kwargs,
)
if args.num_classes is None:
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
args.num_classes = model.num_classes
if args.checkpoint:
load_checkpoint(model, args.checkpoint, args.use_ema)
param_count = sum([m.numel() for m in model.parameters()])
_logger.info('Model %s created, param count: %d' % (args.model, param_count))
data_config = resolve_data_config(
vars(args),
model=model,
use_test_size=not args.use_train_size,
verbose=True,
)
test_time_pool = False
if args.test_pool:
model, test_time_pool = apply_test_time_pool(model, data_config)
model = model.to(device)
if args.channels_last:
model = model.to(memory_format=torch.channels_last)
if args.torchscript:
assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
model = torch.jit.script(model)
elif args.torchcompile:
assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.'
torch._dynamo.reset()
model = torch.compile(model, backend=args.torchcompile)
elif args.aot_autograd:
assert has_functorch, "functorch is needed for --aot-autograd"
model = memory_efficient_fusion(model)
if use_amp == 'apex':
model = amp.initialize(model, opt_level='O1')
if args.num_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu)))
criterion = nn.CrossEntropyLoss().to(device)
root_dir = args.data or args.data_dir
dataset = create_dataset(
root=root_dir,
name=args.dataset,
split=args.split,
download=args.dataset_download,
load_bytes=args.tf_preprocessing,
class_map=args.class_map,
)
if args.valid_labels:
with open(args.valid_labels, 'r') as f:
valid_labels = {int(line.rstrip()) for line in f}
valid_labels = [i in valid_labels for i in range(args.num_classes)]
else:
valid_labels = None
if args.real_labels:
real_labels = RealLabelsImagenet(dataset.filenames(basename=True), real_json=args.real_labels)
else:
real_labels = None
crop_pct = 1.0 if test_time_pool else data_config['crop_pct']
loader = create_loader(
dataset,
input_size=data_config['input_size'],
batch_size=args.batch_size,
use_prefetcher=args.prefetcher,
interpolation=data_config['interpolation'],
mean=data_config['mean'],
std=data_config['std'],
num_workers=args.workers,
crop_pct=crop_pct,
crop_mode=data_config['crop_mode'],
pin_memory=args.pin_mem,
device=device,
tf_preprocessing=args.tf_preprocessing,
)
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
with torch.no_grad():
# warmup, reduce variability of first batch time, especially for comparing torchscript vs non
input = torch.randn((args.batch_size,) + tuple(data_config['input_size'])).to(device)
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
with amp_autocast():
model(input)
end = time.time()
for batch_idx, (input, target) in enumerate(loader):
if args.no_prefetcher:
target = target.to(device)
input = input.to(device)
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
# compute output
with amp_autocast():
output = model(input)
if valid_labels is not None:
output = output[:, valid_labels]
loss = criterion(output, target)
if real_labels is not None:
real_labels.add_result(output)
# measure accuracy and record loss
acc1, acc5 = accuracy(output.detach(), target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1.item(), input.size(0))
top5.update(acc5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % args.log_freq == 0:
_logger.info(
'Test: [{0:>4d}/{1}] '
'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) '
'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format(
batch_idx,
len(loader),
batch_time=batch_time,
rate_avg=input.size(0) / batch_time.avg,
loss=losses,
top1=top1,
top5=top5
)
)
if real_labels is not None:
# real labels mode replaces topk values at the end
top1a, top5a = real_labels.get_accuracy(k=1), real_labels.get_accuracy(k=5)
else:
top1a, top5a = top1.avg, top5.avg
results = OrderedDict(
model=args.model,
top1=round(top1a, 4), top1_err=round(100 - top1a, 4),
top5=round(top5a, 4), top5_err=round(100 - top5a, 4),
param_count=round(param_count / 1e6, 2),
img_size=data_config['input_size'][-1],
crop_pct=crop_pct,
interpolation=data_config['interpolation'],
)
_logger.info(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format(
results['top1'], results['top1_err'], results['top5'], results['top5_err']))
return results
def _try_run(args, initial_batch_size):
batch_size = initial_batch_size
results = OrderedDict()
error_str = 'Unknown'
while batch_size:
args.batch_size = batch_size * args.num_gpu # multiply by num-gpu for DataParallel case
try:
if torch.cuda.is_available() and 'cuda' in args.device:
torch.cuda.empty_cache()
results = validate(args)
return results
except RuntimeError as e:
error_str = str(e)
_logger.error(f'"{error_str}" while running validation.')
if not check_batch_size_retry(error_str):
break
batch_size = decay_batch_step(batch_size)
_logger.warning(f'Reducing batch size to {batch_size} for retry.')
results['error'] = error_str
_logger.error(f'{args.model} failed to validate ({error_str}).')
return results
def main():
setup_default_logging()
args = parser.parse_args()
model_cfgs = []
model_names = []
if os.path.isdir(args.checkpoint):
# validate all checkpoints in a path with same model
checkpoints = glob.glob(args.checkpoint + '/*.pth.tar')
checkpoints += glob.glob(args.checkpoint + '/*.pth')
model_names = list_models(args.model)
model_cfgs = [(args.model, c) for c in sorted(checkpoints, key=natural_key)]
else:
if args.model == 'all':
# validate all models in a list of names with pretrained checkpoints
args.pretrained = True
model_names = list_models('convnext*', pretrained=True, exclude_filters=['*_in21k', '*_in22k', '*in12k', '*_dino', '*fcmae'])
model_cfgs = [(n, '') for n in model_names]
elif not is_model(args.model):
# model name doesn't exist, try as wildcard filter
model_names = list_models(args.model, pretrained=True)
model_cfgs = [(n, '') for n in model_names]
if not model_cfgs and os.path.isfile(args.model):
with open(args.model) as f:
model_names = [line.rstrip() for line in f]
model_cfgs = [(n, None) for n in model_names if n]
if len(model_cfgs):
_logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names)))
results = []
try:
initial_batch_size = args.batch_size
for m, c in model_cfgs:
args.model = m
args.checkpoint = c
r = _try_run(args, initial_batch_size)
if 'error' in r:
continue
if args.checkpoint:
r['checkpoint'] = args.checkpoint
results.append(r)
except KeyboardInterrupt as e:
pass
results = sorted(results, key=lambda x: x['top1'], reverse=True)
else:
if args.retry:
results = _try_run(args, args.batch_size)
else:
results = validate(args)
if args.results_file:
write_results(args.results_file, results, format=args.results_format)
# output results in JSON to stdout w/ delimiter for runner script
print(f'--result\n{json.dumps(results, indent=4)}')
def write_results(results_file, results, format='csv'):
with open(results_file, mode='w') as cf:
if format == 'json':
json.dump(results, cf, indent=4)
else:
if not isinstance(results, (list, tuple)):
results = [results]
if not results:
return
dw = csv.DictWriter(cf, fieldnames=results[0].keys())
dw.writeheader()
for r in results:
dw.writerow(r)
cf.flush()
if __name__ == '__main__':
main()