forked from flame/blis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
11gemm_md.c
269 lines (204 loc) · 8.52 KB
/
11gemm_md.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of The University of Texas nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include "blis.h"
int main( int argc, char** argv )
{
num_t dt_r, dt_c;
num_t dt_s, dt_d;
num_t dt_a, dt_b;
dim_t m, n, k;
inc_t rs, cs;
obj_t a, b, c;
obj_t* alpha;
obj_t* beta;
//
// This file demonstrates mixing datatypes in gemm.
//
// NOTE: Please make sure that mixed datatype support is enabled in BLIS
// before proceeding to build and run the example binaries. If you're not
// sure whether mixed datatype support is enabled in BLIS, please refer
// to './configure --help' for the relevant options.
//
//
// Example 1: Perform a general matrix-matrix multiply (gemm) operation
// with operands of different domains (but identical precisions).
//
printf( "\n#\n# -- Example 1 --\n#\n\n" );
// Create some matrix operands to work with.
dt_r = BLIS_DOUBLE;
dt_c = BLIS_DCOMPLEX;
m = 4; n = 5; k = 1; rs = 0; cs = 0;
bli_obj_create( dt_c, m, n, rs, cs, &c );
bli_obj_create( dt_r, m, k, rs, cs, &a );
bli_obj_create( dt_c, k, n, rs, cs, &b );
// Set the scalars to use.
alpha = &BLIS_ONE;
beta = &BLIS_ONE;
// Initialize the matrix operands.
bli_randm( &a );
bli_randm( &b );
bli_setm( &BLIS_ZERO, &c );
bli_printm( "a (double real): randomized", &a, "%4.1f", "" );
bli_printm( "b (double complex): randomized", &b, "%4.1f", "" );
bli_printm( "c (double complex): initial value", &c, "%4.1f", "" );
// c := beta * c + alpha * a * b, where 'a' is real, and 'b' and 'c' are
// complex.
bli_gemm( alpha, &a, &b, beta, &c );
bli_printm( "c (double complex): after gemm", &c, "%4.1f", "" );
// Free the objects.
bli_obj_free( &a );
bli_obj_free( &b );
bli_obj_free( &c );
//
// Example 2: Perform a general matrix-matrix multiply (gemm) operation
// with operands of different precisions (but identical domains).
//
printf( "\n#\n# -- Example 2 --\n#\n\n" );
// Create some matrix operands to work with.
dt_s = BLIS_FLOAT;
dt_d = BLIS_DOUBLE;
m = 4; n = 5; k = 1; rs = 0; cs = 0;
bli_obj_create( dt_d, m, n, rs, cs, &c );
bli_obj_create( dt_s, m, k, rs, cs, &a );
bli_obj_create( dt_s, k, n, rs, cs, &b );
// Notice that we've chosen C to be double-precision real and A and B to be
// single-precision real.
// Since we are mixing precisions, we will also need to specify the
// so-called "computation precision." That is, we need to signal to
// bli_gemm() whether we want the A*B product to be computed in single
// precision or double precision (prior to the result being accumulated
// back to C). To specify the computation precision, we need to set the
// corresponding bit in the C object. Here, we specify double-precision
// computation.
// NOTE: If you do not explicitly specify the computation precision, it
// will default to the storage precision of the C object.
bli_obj_set_comp_prec( BLIS_DOUBLE_PREC, &c );
// Initialize the matrix operands.
bli_randm( &a );
bli_randm( &b );
bli_setm( &BLIS_ZERO, &c );
bli_printm( "a (single real): randomized", &a, "%4.1f", "" );
bli_printm( "b (single real): randomized", &b, "%4.1f", "" );
bli_printm( "c (double real): initial value", &c, "%4.1f", "" );
// c := beta * c + alpha * a * b, where 'a' and 'b' are single-precision
// real, 'c' is double-precision real, and the matrix product is performed
// in double-precision arithmetic.
bli_gemm( alpha, &a, &b, beta, &c );
bli_printm( "c (double real): after gemm (exec prec = double precision)", &c, "%4.1f", "" );
// Free the objects.
bli_obj_free( &a );
bli_obj_free( &b );
bli_obj_free( &c );
//
// Example 3: Perform a general matrix-matrix multiply (gemm) operation
// with operands of different domains AND precisions.
//
printf( "\n#\n# -- Example 3 --\n#\n\n" );
// Create some matrix operands to work with.
dt_a = BLIS_FLOAT;
dt_b = BLIS_DCOMPLEX;
dt_c = BLIS_SCOMPLEX;
m = 4; n = 5; k = 1; rs = 0; cs = 0;
bli_obj_create( dt_c, m, n, rs, cs, &c );
bli_obj_create( dt_a, m, k, rs, cs, &a );
bli_obj_create( dt_b, k, n, rs, cs, &b );
// Notice that we've chosen C to be single-precision complex, and A to be
// single-precision real, and B to be double-precision complex.
// Set the computation precision to single precision this time.
bli_obj_set_comp_prec( BLIS_SINGLE_PREC, &c );
// Initialize the matrix operands.
bli_randm( &a );
bli_randm( &b );
bli_setm( &BLIS_ZERO, &c );
bli_printm( "a (single real): randomized", &a, "%4.1f", "" );
bli_printm( "b (double complex): randomized", &b, "%4.1f", "" );
bli_printm( "c (single complex): initial value", &c, "%4.1f", "" );
// c := beta * c + alpha * a * b, where 'a' is single-precision real, 'b'
// is double-precision complex, 'c' is single-precision complex, and the
// matrix product is performed in single-precision arithmetic.
bli_gemm( alpha, &a, &b, beta, &c );
bli_printm( "c (single complex): after gemm (exec prec = single precision)", &c, "%4.1f", "" );
// Free the objects.
bli_obj_free( &a );
bli_obj_free( &b );
bli_obj_free( &c );
//
// Example 4: Project objects between the real and complex domains.
//
printf( "\n#\n# -- Example 4 --\n#\n\n" );
// Create some matrix operands to work with.
dt_r = BLIS_DOUBLE;
dt_c = BLIS_DCOMPLEX;
m = 4; n = 5; rs = 0; cs = 0;
bli_obj_create( dt_r, m, n, rs, cs, &a );
bli_obj_create( dt_c, m, n, rs, cs, &b );
// Initialize a real matrix A.
bli_randm( &a );
bli_printm( "a (double real): randomized", &a, "%4.1f", "" );
// Project real matrix A to the complex domain (in B).
bli_projm( &a, &b );
bli_printm( "b (double complex): projected from 'a'", &b, "%4.1f", "" );
// Notice how the imaginary components in B are zero since any real
// matrix implicitly has imaginary values that are equal to zero.
// Now let's project in the other direction.
// Initialize the complex matrix B.
bli_randm( &b );
bli_printm( "b (double complex): randomized", &b, "%4.1f", "" );
// Project complex matrix B to the real domain (in A).
bli_projm( &b, &a );
bli_printm( "a (double real): projected from 'b'", &a, "%4.1f", "" );
// Notice how the imaginary components are lost in the projection from
// the complex domain to the real domain.
// Free the objects.
bli_obj_free( &a );
bli_obj_free( &b );
//
// Example 5: Typecast objects between the single and double precisions.
//
printf( "\n#\n# -- Example 5 --\n#\n\n" );
// Create some matrix operands to work with.
dt_s = BLIS_FLOAT;
dt_d = BLIS_DOUBLE;
m = 4; n = 3; rs = 0; cs = 0;
bli_obj_create( dt_d, m, n, rs, cs, &a );
bli_obj_create( dt_s, m, n, rs, cs, &b );
// Initialize a double-precision real matrix A.
bli_randm( &a );
bli_printm( "a (double real): randomized", &a, "%23.16e", "" );
// Typecast A to single precision.
bli_castm( &a, &b );
bli_printm( "b (single real): typecast from 'a'", &b, "%23.16e", "" );
// Notice how the values in B are only accurate to the 6th or 7th decimal
// place relative to the true values in A.
// Free the objects.
bli_obj_free( &a );
bli_obj_free( &b );
return 0;
}