-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathingesting.py
32 lines (22 loc) · 969 Bytes
/
ingesting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
import streamlit as st
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
# Set persist directory
persist_directory = 'db'
tre_loader = DirectoryLoader('./docs/tre/', glob="*.pdf", recursive=True)
tre_docs = tre_loader.load()
embeddings = OpenAIEmbeddings()
text_splitter = CharacterTextSplitter(chunk_size=250, chunk_overlap=8)
# Split documents and generate embeddings
tre_docs_split = text_splitter.split_documents(tre_docs)
print(tre_docs_split)
#metadata = []
#for doc in tre_docs_split:
# metadata.append(doc.metadata['source'])
# Create Chroma instances and persist embeddings
treDB = Chroma.from_documents(tre_docs_split, embeddings, persist_directory=os.path.join(persist_directory, 'tre'))
treDB.persist()