Title |
D2.8.III.3 INSPIRE Data Specification on Soil – Draft Guidelines |
Creator |
INSPIRE Thematic Working Group Soil |
Date |
2013-12-10 |
Subject |
INSPIRE Data Specification for the spatial data theme Soil |
Publisher |
European Commission Joint Research Centre |
Type |
Text |
Description |
This document describes the INSPIRE Data Specification for the spatial data theme Soil |
Contributor |
Members of the INSPIRE Thematic Working Group Soil |
Format |
Portable Document Format (pdf) |
Source |
|
Rights |
Public |
Identifier |
D2.8.III.3_v3.0 |
Language |
en |
Relation |
Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE) |
Coverage |
Project duration |
This document describes the "INSPIRE data specification on Soil – Technical Guidelines" version 3.0 as developed by the Thematic Working Group (TWG) TWG-Soil using both natural and a conceptual schema language.
The data specification is based on a common template[1] used for all data specifications, which has been harmonised using the experience from the development of the Annex I, II and III data specifications.
This document provides guidelines for the implementation of the provisions laid down in the Implementing Rule for spatial data sets and services of the INSPIRE Directive. It also includes additional requirements and recommendations that, although not included in the Implementing Rule, are relevant to guarantee or to increase data interoperability.
Two executive summaries provide a quick overview of the INSPIRE data specification process in general, and the content of the data specification on Soil in particular. We highly recommend that managers, decision makers, and all those new to the INSPIRE process and/or information modelling should read these executive summaries first.
The UML diagrams (in Chapter 5) offer a rapid way to see the main elements of the specifications and their relationships. The definition of the spatial object types, attributes, and relationships are included in the Feature Catalogue (also in Chapter 5). People having thematic expertise but not familiar with UML can fully understand the content of the data model focusing on the Feature Catalogue. Users might also find the Feature Catalogue especially useful to check if it contains the data necessary for the applications that they run. The technical details are expected to be of prime interest to those organisations that are responsible for implementing INSPIRE within the field of Soil, but also to other stakeholders and users of the spatial data infrastructure.
The technical provisions and the underlying concepts are often illustrated by examples. Smaller examples are within the text of the specification, while longer explanatory examples and descriptions of selected use cases are attached in the annexes.
In order to distinguish the INSPIRE spatial data themes from the spatial object types, the INSPIRE spatial data themes are written in italics.
The document will be publicly available as a 'non-paper'. It does not represent an official position of the European Commission, and as such cannot be invoked in the context of legal procedures. |
Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.
The challenges regarding the lack of availability, quality, organisation, accessibility, and sharing of spatial information are common to a large number of policies and activities and are experienced across the various levels of public authority in Europe. In order to solve these problems it is necessary to take measures of coordination between the users and providers of spatial information. The Directive 2007/2/EC of the European Parliament and of the Council adopted on 14 March 2007 aims at establishing an Infrastructure for Spatial Information in the European Community (INSPIRE) for environmental policies, or policies and activities that have an impact on the environment.
INSPIRE is based on the infrastructures for spatial information that are created and maintained by the Member States. To support the establishment of a European infrastructure, Implementing Rules addressing the following components of the infrastructure have been specified: metadata, interoperability of spatial data sets (as described in Annexes I, II, III of the Directive) and spatial data services, network services, data and service sharing, and monitoring and reporting procedures.
INSPIRE does not require collection of new data. However, after the period specified in the Directive[2] Member States have to make their data available according to the Implementing Rules.
Interoperability in INSPIRE means the possibility to combine spatial data and services from different sources across the European Community in a consistent way without involving specific efforts of humans or machines. It is important to note that "interoperability" is understood as providing access to spatial data sets through network services, typically via Internet. Interoperability may be achieved by either changing (harmonising) and storing existing data sets or transforming them via services for publication in the INSPIRE infrastructure. It is expected that users will spend less time and efforts on understanding and integrating data when they build their applications based on data delivered in accordance with INSPIRE.
In order to benefit from the endeavours of international standardisation bodies and organisations established under international law their standards and technical means have been utilised and referenced, whenever possible.
To facilitate the implementation of INSPIRE, it is important that all stakeholders have the opportunity to participate in specification and development. For this reason, the Commission has put in place a consensus building process involving data users, and providers together with representatives of industry, research and government. These stakeholders, organised through Spatial Data Interest Communities (SDIC) and Legally Mandated Organisations (LMO)[3], have provided reference materials, participated in the user requirement and technical[4] surveys, proposed experts for the Data Specification Drafting Team[5], the Thematic Working Groups[6] and other ad-hoc cross-thematic technical groups and participated in the public stakeholder consultations on draft versions of the data specifications. These consultations covered expert reviews as well as feasibility and fitness-for-purpose testing of the data specifications[7].
This open and participatory approach was successfully used during the development of the data specifications on Annex I, II and III data themes as well as during the preparation of the Implementing Rule on Interoperability of Spatial Data Sets and Services[8] for Annex I spatial data themes and of its amendment regarding the themes of Annex II and III.
The development framework elaborated by the Data Specification Drafting Team aims at keeping the data specifications of the different themes coherent. It summarises the methodology to be used for the development of the data specifications, providing a coherent set of requirements and recommendations to achieve interoperability. The pillars of the framework are the following technical documents[9]:
-
The Definition of Annex Themes and Scope describes in greater detail the spatial data themes defined in the Directive, and thus provides a sound starting point for the thematic aspects of the data specification development.
-
The Generic Conceptual Model defines the elements necessary for interoperability and data harmonisation including cross-theme issues. It specifies requirements and recommendations with regard to data specification elements of common use, like the spatial and temporal schema, unique identifier management, object referencing, some common code lists, etc. Those requirements of the Generic Conceptual Model that are directly implementable are included in the Implementing Rule on Interoperability of Spatial Data Sets and Services.
-
The Methodology for the Development of Data Specifications defines a repeatable methodology. It describes how to arrive from user requirements to a data specification through a number of steps including use-case development, initial specification development and analysis of analogies and gaps for further specification refinement.
-
The Guidelines for the Encoding of Spatial Data defines how geographic information can be encoded to enable transfer processes between the systems of the data providers in the Member States. Even though it does not specify a mandatory encoding rule it sets GML (ISO 19136) as the default encoding for INSPIRE.
-
The Guidelines for the use of Observations & Measurements and Sensor Web Enablement-related standards in INSPIRE Annex II and III data specification development provides guidelines on how the "Observations and Measurements" standard (ISO 19156) is to be used within INSPIRE.
-
The Common data models are a set of documents that specify data models that are referenced by a number of different data specifications. These documents include generic data models for networks, coverages and activity complexes.
The structure of the data specifications is based on the "ISO 19131 Geographic information - Data product specifications" standard. They include the technical documentation of the application schema, the spatial object types with their properties, and other specifics of the spatial data themes using natural language as well as a formal conceptual schema language[10].
A consolidated model repository, feature concept dictionary, and glossary are being maintained to support the consistent specification development and potential further reuse of specification elements. The consolidated model consists of the harmonised models of the relevant standards from the ISO 19100 series, the INSPIRE Generic Conceptual Model, and the application schemas[11] developed for each spatial data theme. The multilingual INSPIRE Feature Concept Dictionary contains the definition and description of the INSPIRE themes together with the definition of the spatial object types present in the specification. The INSPIRE Glossary defines all the terms (beyond the spatial object types) necessary for understanding the INSPIRE documentation including the terminology of other components (metadata, network services, data sharing, and monitoring).
By listing a number of requirements and making the necessary recommendations, the data specifications enable full system interoperability across the Member States, within the scope of the application areas targeted by the Directive. The data specifications (in their version 3.0) are published as technical guidelines and provide the basis for the content of the Implementing Rule on Interoperability of Spatial Data Sets and Services[12]. The content of the Implementing Rule is extracted from the data specifications, considering short- and medium-term feasibility as well as cost-benefit considerations. The requirements included in the Implementing Rule are legally binding for the Member States according to the timeline specified in the INSPIRE Directive.
In addition to providing a basis for the interoperability of spatial data in INSPIRE, the data specification development framework and the thematic data specifications can be reused in other environments at local, regional, national and global level contributing to improvements in the coherence and interoperability of data in spatial data infrastructures.
For the purpose of the data specification in this document, soil is the upper part of the earth’s crust, formed by mineral particles, organic matter, water, air and living organisms. It is the interface between rock, air and water which hosts most of the biosphere. Soil is subject to a series of threats as recognized not only in the EU Soil Thematic Strategy (COM(2006)231 final), but indirectly also in several adopted EU Directives (e.g. 1999/31/EC, 91/676/EEC, 86/278/EC..). The requirements of these directives were considered while compiling this data specification.
Based on the definition given by the Directive (2007/2/EC), the scope for the soil theme covers:
-
Soil inventories, providing one-off assessments of soil conditions and/or soil properties at certain locations and at a specific point in time, and allow soil monitoring, providing a series of assessments showing how soil conditions and/or properties change over time.
-
Soil mapping, providing a spatial presentation of the properties linked to the soils, including soil types; typically, soil maps are derived with the help of data available in soil inventories. Also other soil related information derived from soil properties, possibly in combination with non-soil data are within the scope.
The INSPIRE methodology was used (D2.6). The input from the Member States was used for defining 15 Use cases covering Agro-Environmental Indicators, Soil Derived Information, Contaminated sites and Soil Monitoring (see Annex B). Based on these Use cases, together with the expert knowledge present in the thematic working group (TWG), the data model was built and validated.
The comments from the Member State consultation and the testing were used to improve the data model.
The data model contains a core set of spatial object types and their attributes that are considered to be essential for the infrastructure along which data on soil can be exchanged. In addition to the core Soil data model an extension data model (including application schema) deals with the management of soil contamination (see Annex D). This model extension demonstrates how the core Soil data model can be extended to include more specific requirements (soil contamination) that were identified by the Use cases.
The TWG has also prepared an example of how a soil derived theme - soil organic carbon - can be provided utilising the core Soil data model. (see Annex D)
The soil observable parameters relevant for some approved EU Directives are included in the model in the spatial object types SoilProfile, ProfileElement, SoilDerivedObject and SoilThemeCoverage.
The data specification is based, as far as possible, on existing standards. Apart from general ISO19xxx standards used in relation to geographical information, use was also made of the ISO DIS 28258 (Draft International Standard/Soil Quality) standard. As soil contains many observable and measurable parameters, the specialised use of the ISO 19156:2011 Observations and Measurements standard is proposed. Based on the soil community practise to provide thematic soil map information in a raster form, this option is provided for by utilising the ISO 19123 Coverages standard.
To enhance semantic interoperability the use of the soil classification scheme WRB (World Reference Base for Soil Resources) and the FAO horizon notation scheme as primary classification systems are proposed. The use of other currently used (local, regional, national) classification systems is also provided for.
Many individuals and organisations have contributed to the development of these Guidelines.
The Thematic Working Group SOIL (TWG-SO) included:
Arnold Arnoldussen (TWG Facilitator), Stijn Keijers (TWG Editor), Christine Le Bas, Jandirk Bulens (TWG co-editor), Edoardo Costantini, Einar Eberhardt, Marc van Liedekerke, Stephan Marahrens, Ainara Senar, Kees Versluijs, Robert Tomas (European Commission contact point).
Milan Sanka and Patrick Engels also contributed to earlier drafts.
Other contributors to the INSPIRE data specifications are the Drafting Team Data Specifications, the JRC Data Specifications Team and the INSPIRE stakeholders - Spatial Data Interested Communities (SDICs) and Legally Mandated Organisations (LMOs).
Contact information
Maria Vanda Nunes de Lima & Michael Lutz
European Commission Joint Research Centre (JRC)
Institute for Environment and Sustainability
Unit H06: Digital Earth and Reference Data
http://inspire.ec.europa.eu/index.cfm/pageid/2
- 1. Scope
- 2. Overview
- 3. Specification scopes
- 4. Identification information
- 5. Data content and structure
- 5.1. Application schemas – Overview
- 5.2. Basic notions
- 5.3. Application schema SOIL
- 5.4. Default reference systems, units of measure and grid
- 5.5. Data quality elements
- 5.6. Minimum data quality recommendations
- 5.7. Metadata elements defined in INSPIRE Metadata Regulation
- 5.7.1. Conformity
- 5.7.2. Lineage
- 5.7.3. Temporal reference
- 5.7.4. Coordinate Reference System
- 5.7.5. Temporal Reference System
- 5.7.6. Encoding
- 5.7.7. Character Encoding
- 5.7.8. Spatial representation type
- 5.7.9. Data Quality – Logical Consistency – Topological Consistency
- 5.7.10. Maintenance Information
- 5.7.11. Metadata elements for reporting data quality
- 6. Delivery
This document specifies a harmonised data specification for the spatial data theme Soil as defined in Annex III of the INSPIRE Directive.
This data specification provides the basis for the drafting of Implementing Rules according to Article 7 (1) of the INSPIRE Directive [Directive 2007/2/EC]. The entire data specification is published as implementation guidelines accompanying these Implementing Rules.
Definition:
Soils and subsoil characterised according to depth, texture, structure and content of particles and organic material, stoniness, erosion, where appropriate mean slope and anticipated water storage capacity. [Directive 2007/2/EC]
Description:
Soil is a non-renewable resource at the human scale, which is important for many parts of society. In many places in the world, soil degradation is a serious process threatening that soil can fulfil its functions in the future. In the climate change debate, soil is becoming important in relation to climate change mitigation and adaptation. Soil degradation may result in soils that no longer can fulfil services like food production, or being so contaminated that they form a threat for human and/or ecological health.
Soil is subject to a series of threats as recognized in the EU Soil Thematic Strategy (COM(2006)231 final): erosion, organic matter decline, contamination, salinisation, sodification, compaction, soil biodiversity loss, sealing, landslides and flooding. Also soil acidification is generally considered to be a problem in humid areas. Information on soils is crucial to make fundamental decisions and to protect the soil against degradation processes.
The need for soil information can vary from improvement of agricultural and forestry production, prevention of environment damage due to human activities, or to getting to know the location and extent of sites with high concentrations of harmful substances. There is a high demand for soil information in relation to carbon sequestration (climate change), the prevention of soil degradation, improvement of agricultural production (e.g. food and bio-energy crops) and for the mitigation of desertification in areas with arid and semi-arid climatic conditions.
In order to provide meaningful use and to share and exchange information in the field of soil, part of the world of soil (seen as a Universe of Discourse (UoD)) is to be modelled. The soil UoD is defined and limited by the problems that need to be solved and the solutions that are to be provided through the use of soil information. The kind of soil information is suggested by Use Cases (preferably underpinned by legislation) that have been identified by the TWG-SO based on input from INSPIRE stakeholders and by the expertise available in the expert group.
The following use cases are identified and described in Annex B:
-
Agri-Environmental Indicators:
-
Use Case Environmental Indicator Soil Erosion
-
Use Case Environmental Indicator Soil Quality
-
Use Case Environmental Indicator Contaminated Sites
-
-
Thematic maps derived from soil information
-
Land irrigation suitability in Navarra (Spain)
-
Development of methodologies for soil salinity surveillance in the middle Ebro basin (Spain)
-
Monitoring Agricultural ResourceS (MARS) project
-
Restrictions for N and P in agriculture
-
Calculation threshold trace elements
-
Use of Soil Scape Viewer
-
Establishment Less Favoured Areas (France)
-
-
Contaminated sites
-
Contaminated Land Register Austria
-
Use Case drinking water and soil contamination
-
Use Case Ecology and contamination
-
Use Case Property and contamination
-
-
Soil Monitoring
-
Use Case state of soil in Europe
-
To show the relevance of known European legislation related to soil, the Use Cases were cross-checked with the legislation at hand; where there is a common interest or overlap on data used, it is indicated in the following table:
NOTE none of the directives is considered as a use case in itself.
Based on the mentioned Use Cases and on the TWG-SO expertise, the following relevant and general uses for soil information were identified:
-
For using the spatial distribution of soils and their properties, data that allow the creation of maps (at various scales) on the distribution of soil types and soil properties are needed. Such data are based on data taken from soil profiles, soil observations and soil samples (taken on soil sites at soil plots), which in combination with human expertise and/or automated procedures can be interpreted such that physical real world areas, which show certain soil characteristics, can be delineated, depending on the scale considered, and named here as soil bodies. Hence structuring soil data and the possibility for mapping them are included.
-
Over time, important soil characteristics (e.g. content of organic carbon, soil acidity, etc.) may vary, and it can be required to follow these changes over time. Hence real world 'soil monitoring' is taken into consideration.
-
In the context of the EU Soil Thematic Strategy, soil contamination is considered as one of the major threats to soil, at the local scale (contaminated sites); at large area scale (diffuse soil contamination, usually low level and dispersed by deposition from air, by groundwater or by agricultural practices) and at the level of brownfields (regions with many contaminated sites and usually combined with diffuse contamination). An attempt is made to include a generic approach towards some aspects of soil contamination (see Annex D).
The INSPIRE themes Soil and Geology show some overlap regarding the real world objects they describe, but often see them under different perspectives (Figure 1). For the soil domain, rock is the parent material of any soil development, and as such geogenic layers are included in soil datasets. Nonetheless, rock types and their genesis can be named in the same way as in the domain of geology. Hence, the code lists to characterize lithology, processes and process environments have been agreed upon by the INSPIRE Thematic Working Groups Geology and Soil. As the superficial layers in which soils develop are not considered in geological datasets throughout, the spatial data from both domains do not necessarily overlap, but kind of complete one another.
Figure 1: The field of Pedology seen in relation to the field of Geology.
On the basis of the previous considerations, the soil theme includes the following phenomena (either in the physical world or conceptualized world):
-
soil profiles
-
soil sites, soil plots
-
soil bodies (delineated areas on the earth’s surface determined on the basis of certain soil characteristics)
-
soil characteristics (parameters) that change over time (possibly allowing soil monitoring)
Considering these soil related phenomena, an object model is constructed in the form of a UML class diagram. Information exchange structured according to this model, originating from different providers, will be structurally interoperable and provide a possible way for meaningful exchange of soil information.
A model was developed consisting of a core of objects, their interrelations and attributes; they are considered to be essential; this model is the basis for further INSPIRE legislation.
However, as exemplified by some of the described Use Cases, the objects of the model do not fully allow for the implementation of certain uses and purposes. The need for modelling of soil data beyond this model is accommodated by the possibility of creating extensions to it. In this document, the implementation of a kind of extension is demonstrated for a Use Case on soil contamination and content of soil organic carbon (see Annex D).
In the following, the structuring of the elements and concepts of the soil domain as model-objects and attributes is described. It should be noted that many elements of the European Soil Geographical Data Base and other international initiatives related to the standardization and exchange of soil data have been taken into account. The names given to the objects, attributes and associations are as neutral as possible i.e. not deliberately taken from existing, specific nomenclature.
Figure 2: Soil profile layer and horizon located in a soil plot.
Soil Profiles
The real world concept "soil profile" (SoilProfile class in the model) (illustrated by Figure 2) can be defined as a cross-section of the soil from the surface down to and including the beginning of the fresh material unmodified by pedogenesis, consisting of various more or less horizontally oriented features formed by pedogenic processes called horizons. Any real world soil profile, considered as a whole, can be characterized by a number of properties, such as: its soil type according to a soil classification scheme, its water capacity available for plants, coarse fragment cover, the presence of a water table, etc. Soil horizons within a profile possess biological, physical and chemical characteristics which differ from the horizons above and beneath and are distinguished principally by texture, colour, structure, chemical composition, and their biomass. The chemical properties may include concentrations in the solid, water and air phases, mobility and soil adsorption capacities. A profile can additionally be described with layers (instead of being described with horizons) which do not necessarily correspond with pedo-genetically formed horizons. Such layers can be fixed depths intervals of sampling, top- and subsoil, or geogenic layers. Layers and horizons are considered both as profile elements in the model as they are both horizontal subdivisions of the soil profile.
The real world concept "observed soil profile" (ObservedSoilProfile object in the model) represents a soil profile physically located in a soil plot (or exposed with a boring), described in the field, possibly sampled and analysed in the laboratory. An observed soil profile refers to a real world location (specified by an associated soil plot).
Figure 3: Soil profiles, soil bodies.
A "derived soil profile" (DerivedSoilProfile object in the model) is a soil profile that cannot be located in a soil plot. It corresponds to the spatial extent of a soil type that has been observed in one or several observed soil profiles. The derived soil profile has property values that could be derived (e.g. averaged) from the values of the corresponding properties of one or more observed soil profiles. The derived soil profile can be characterized by the same properties as those of the observed soil profiles, but it is understood that the values for these properties have been derived or determined by expert judgment or calculation. A derived soil profile can be seen as a characterisation of a Soil Typological Unit (STU), or Series, as recognized in the European Soil Geographical Database and other soil databases at national or regional levels. A derived soil profile is not necessarily linked to observed soil profiles, in which case it represents a hypothetical soil profile.
Soil delineated areas
To delineate spatially an area that is characterized by a set of such derived soil profiles, the model introduces the construct of "soil body" (SoilBody object in the model) which represents an association (or other types of spatial interlinkages of various soil types) of soils that are found together in the area. Soils forming the soil body are described using derived soil profiles. The soil body can be represented by one or more derived soil profiles, giving an impression of the properties of the soil body as a whole. This is modelled by linking derived soil profiles to the soil body, indicating their area share, expressed in percentages or percentage ranges (see Figure 3). Note that the exact location of each kind of soil type within the soil body is unknown; only the area (geometry) of the soil body is known and also how much of this area is covered by each of the soil types (described as derived soil profiles) in that area. For instance, a soil body could consist of one dominant soil (as described by a derived soil profile) and of other soils (described by other derived soil profiles) having characteristics different from the dominant one. The label of a soil body allows a description of it, which may be useful for building legends. A soil body can be interpreted as a Soil Mapping Unit (SMU) as recognized in the European Soil Geographical Data Base and other soil databases at national or regional levels.
In the context of the model, a SoilDerivedObject object is defined as a spatial object representing a soil related property which value could, for instance, be derived from values of soil properties of related observed soil profiles and/or related soil bodies (and thus soil derived profiles). A value completely independent of observed soil profiles and soil bodies could be possible as well.
In practice, the derivation of values for the SoilDerivedObject objects could be done from information stored in observed soil profiles and/or soil bodies, or it could also be done from such information in combination with external data. An example of the former could be the calculation of pH or soil organic matter content in the topsoil, based on data found in a set of observed soil profiles. An example of the latter could be the derivation of certain soil related properties (for example soil erosion risk) for which calibrated models are to be used which not only extract and elaborate information from observed soil profiles and/or soil bodies, but also require data that are external to the soil Model (e.g. meteorological and land cover data).
In Annex D an example is given how the model can be extended for a more concrete use case (soil organic carbon content and soil organic carbon stock), both as a coverage and as a vector.
Soil Site and Soil Plot
A soil site (SoilSite object in the model) is considered as a) the surrounding of a soil profile, and/or b) the larger piece of land that is directly linked to and described by all soil investigations on one or more spots, called soil plots. A "soil plot" (SoilPlot object in the model) is the location of a specific soil investigation (e.g. of a trial pit). Because for many soil investigations the studied soil is destroyed, the soil site provides also the object to which the results of repeated investigations are related and handled as if they were obtained from the very same place. The purpose of the investigation can be of a general nature (e.g. a reconnaissance whereby soil profiles are taken for a general soil characterization) or specific (e.g. a reconnaissance whereby samples are taken to investigate potentially contaminated land); this information can be crucial for data evaluation to identify bias in the selection of sites. A soil plot within a soil site is of a certain type (borehole, trial pit, sample) and located by coordinates and/or the name of that location.
Soil characteristics that change over time
There are no explicit constructs foreseen related to soil monitoring. Monitoring, considered as the repeated observation of one or more soil characteristics over time, can be implemented through the use of the various time/date attributes of the objects of the model.
Soil Contamination
There are no explicit constructs for soil contamination data in the Model. Contamination is implicitly included by the possibility of specifying contamination parameters for sites, profiles and profile elements. The contaminants are treated here like chemical elements. There are also no explicit constructs included in the model for contaminated sites. For the moment, as an example how the model could be extended to deal with soil contaminated sites and site management, a generic Use Case on "Soil – Contamination" is provided in Annex D. Nevertheless, some heavy metal elements are part of a codelist for profile element parameter because they are cited by the directive 86/278/EC as elements to be analysed in agricultural parcels before the application of sewage sludge.
Note on soil sampling
In the context of soils two different meanings can be seen for "sample":
On the one hand, the notion of "soil sample", considered as a physical part of the soil for which one or more properties are determined. This notion is not withheld as an explicit construct in the Model.
On the other hand, "sample" is considered to be the location where soil material is taken at a specific depth or over a depth range without doing any soil profile description. "Sample", together with trial pit and borehole, is a type of soil plot. The latter is the concept described in the model.
Definition: |
Entry in the INSPIRE registry: http://inspire.ec.europa.eu/theme/so/
[Directive 2007/2/EC] Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)
[ISO 19107] EN ISO 19107:2005, Geographic Information – Spatial Schema
[ISO 19108] EN ISO 19108:2005, Geographic Information – Temporal Schema
[ISO 19108-c] ISO 19108:2002/Cor 1:2006, Geographic Information – Temporal Schema, Technical Corrigendum 1
[ISO 19111] EN ISO 19111:2007 Geographic information - Spatial referencing by coordinates (ISO 19111:2007)
[ISO 19113] EN ISO 19113:2005, Geographic Information – Quality principles
[ISO 19115] EN ISO 19115:2005, Geographic information – Metadata (ISO 19115:2003)
[ISO 19118] EN ISO 19118:2006, Geographic information – Encoding (ISO 19118:2005)
[ISO 19123] EN ISO 19123:2007, Geographic Information – Schema for coverage geometry and functions
[ISO 19125-1] EN ISO 19125-1:2004, Geographic Information – Simple feature access – Part 1: Common architecture
[ISO 19135] EN ISO 19135:2007 Geographic information – Procedures for item registration (ISO 19135:2005)
[ISO 19138] ISO/TS 19138:2006, Geographic Information – Data quality measures
[ISO 19139] ISO/TS 19139:2007, Geographic information – Metadata – XML schema implementation
[ISO 19157] ISO/DIS 19157, Geographic information – Data quality
[OGC 06-103r4] Implementation Specification for Geographic Information - Simple feature access – Part 1: Common Architecture v1.2.1
NOTE This is an updated version of "EN ISO 19125-1:2004, Geographic information – Simple feature access – Part 1: Common architecture".
[Regulation 1205/2008/EC] Regulation 1205/2008/EC implementing Directive 2007/2/EC of the European Parliament and of the Council as regards metadata
[Regulation 976/2009/EC] Commission Regulation (EC) No 976/2009 of 19 October 2009 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards the Network Services
[Regulation 1089/2010/EC] Commission Regulation (EU) No 1089/2010 of 23 November 2010 implementing Directive 2007/2/EC of the European Parliament and of the Council as regards interoperability of spatial data sets and services
ISO 19156: 2011. Geographic Information – Observation and Measurements
ISO DIS 28258 Soil Quality – Digital Exchange of Soil-Related data
NOTE: The ISO DIS 28258 draft standard has been developed in parallel with this data specification on soil. It has a wider scope, but the models mutually influenced each other. In conclusion, as far as both models cover the same real world objects, central terms and definitions in and for the data models are near enough to be mappable into each other.
General terms and definitions helpful for understanding the INSPIRE data specification documents are defined in the INSPIRE Glossary[13].
Specifically, for the theme Soil, the following terms are defined:
Soil Body: Part of the soil cover that is delineated and that is homogeneous with regard to certain soil properties and/or spatial patterns. It is the real-world correlate of a soil mapping unit.
Derived Soil Profile: A non-point-located soil profile that serves as a reference profile for a specific soil type in a certain geographical area. One or more derived soil profiles can represent the information which is combined to so-called Soil Typological Units (STUs) in some soil mapping approaches.
Soil Derived Object: A spatial object type for representing spatial objects with soil-related property derived from one or more soil and possibly other non soil properties. It is the real-world correlate of the mapping units of soil property maps which often are derived from the soil map that shows the distribution of soil taxa.
ATS |
Abstract Test Suite |
CAP |
Common Agricultural Policy |
CGMS |
Crop Growth Monitoring System |
CORINE |
Coordination of Information on the Environment |
DG AGRI |
Directorate – General for Agriculture and Rural Development |
DG ENV |
Directorate – General for Environment |
DIS ISO |
Draft international standard |
DTM |
Digital Terrain Model |
EC |
European Commission |
EEA |
European Environmental Agency |
EIONET |
European Environment Information and Observation Network |
EMISS |
Electromagnetic induction sensing systems |
ESBN |
European Soil Bureau Network |
ESDaC |
European Soil Data Center |
ETRS89 |
European Terrestrial Reference System 1989 |
ETRS89-LAEA |
Lambert Azimuthal Equal Area |
ETSSP |
European Thematic Strategy for Soil Protection |
EU |
European Union |
EVRS |
European Vertical Reference System |
FAO |
Food and Agricultural Organisation |
GCM |
Global Circulation Model |
GIS |
Geographical Information System |
GML |
Geography Markup Language |
GS Soil |
eContentplus project: "Assessment and strategic development of INSPIRE compliant Geodata Services for European Soil data |
INSPIRE |
Infrastructure for Spatial Information in Europe |
IR |
Implementing Rule |
IRENA |
Indicator reporting on the integration of environmental concerns into agricultural policy |
ISDSS |
Interoperability of Spatial Data Sets and Services |
ISO |
International Organization for Standardization |
ITRS |
International Terrestrial Reference System |
IUSS |
International Union for Soil Associations |
JRC |
Joint Research Centre |
LAT |
Lowest Astronomical Tide |
LFA |
Less Favoured Areas |
LMO |
Legally Mandated Organisation |
MARS |
Monitoring Agricultural ResourceS |
MCYFS |
Crop Yield Forecasting System |
NDVI |
Normalised Difference Vegetation Index |
NUTS |
Nomenclature of Units for Territorial Statistics |
O&M |
Observations & Measurements |
OCL |
Object Constraint Language |
OM |
Organic Matter |
PTF |
Pedo Transfer Function |
RDBMS |
Relational Database Management System |
RMQS |
Réseau de Mesures de la Qualité des Sols |
RUSLE |
Revised Universal Soil Loss Equation |
SCU |
Soil Cartographic Unit |
SDIC |
Spatial Data Interest Community |
SFD |
Proposed Soil Frame Work Directive |
SGDBE |
Soil Geographical Data Base for Europe |
SLD |
Second level domain |
SMU |
Soil Mapping Unit |
SRTM |
Shuttle Radar Topography Mission |
STU |
Soil Typological Unit |
TG |
Technical Guidance |
TWG |
Thematic Working Group (INSPIRE) |
TWG SO |
Thematic Working Group Soil (INSPIRE) |
UML |
Unified Modeling Language |
UN |
United Nations |
URI |
Uniform Resource Identifier |
USBR |
United States Bureau for Reclamation |
USDA |
United States Department for Agriculture |
UTC |
Universal Time Coordinated |
WFD |
Water Frame Work Directive |
WRB |
World Reference Base for Soil Resources |
XML |
EXtensible Markup Language |
The schematic diagram in Figure 4 gives an overview of the relationships between the INSPIRE legal acts (the INSPIRE Directive and Implementing Rules) and the INSPIRE Technical Guidelines. The INSPIRE Directive and Implementing Rules include legally binding requirements that describe, usually on an abstract level, what Member States must implement.
In contrast, the Technical Guidelines define how Member States might implement the requirements included in the INSPIRE Implementing Rules. As such, they may include non-binding technical requirements that must be satisfied if a Member State data provider chooses to conform to the Technical Guidelines. Implementing these Technical Guidelines will maximise the interoperability of INSPIRE spatial data sets.
Figure 4 - Relationship between INSPIRE Implementing Rules and Technical Guidelines
The purpose of these Technical Guidelines (Data specifications on Soil) is to provide practical guidance for implementation that is guided by, and satisfies, the (legally binding) requirements included for the spatial data theme Soil in the Regulation (Implementing Rules) on interoperability of spatial data sets and services. These requirements are highlighted in this document as follows:
📕
|
IR Requirement This style is used for requirements contained in the Implementing Rules on interoperability of spatial data sets and services (Commission Regulation (EU) No 1089/2010). |
For each of these IR requirements, these Technical Guidelines contain additional explanations and examples.
NOTE The Abstract Test Suite (ATS) in Annex A contains conformance tests that directly check conformance with these IR requirements.
Furthermore, these Technical Guidelines may propose a specific technical implementation for satisfying an IR requirement. In such cases, these Technical Guidelines may contain additional technical requirements that need to be met in order to be conformant with the corresponding IR requirement when using this proposed implementation. These technical requirements are highlighted as follows:
📒
|
TG Requirement X This style is used for requirements for a specific technical solution proposed in these Technical Guidelines for an IR requirement. |
NOTE 1 Conformance of a data set with the TG requirement(s) included in the ATS implies conformance with the corresponding IR requirement(s).
NOTE 2 In addition to the requirements included in the Implementing Rules on interoperability of spatial data sets and services, the INSPIRE Directive includes further legally binding obligations that put additional requirements on data providers. For example, Art. 10(2) requires that Member States shall, where appropriate, decide by mutual consent on the depiction and position of geographical features whose location spans the frontier between two or more Member States. General guidance for how to meet these obligations is provided in the INSPIRE framework documents.
In addition to IR and TG requirements, these Technical Guidelines may also include a number of recommendations for facilitating implementation or for further and coherent development of an interoperable infrastructure.
📘
|
Recommendation X Recommendations are shown using this style. |
NOTE The implementation of recommendations is not mandatory. Compliance with these Technical Guidelines or the legal obligation does not depend on the fulfilment of the recommendations.
This data specification does not distinguish different specification scopes, but just considers one general scope.
NOTE For more information on specification scopes, see [ISO 19131:2007], clause 8 and Annex D.
These Technical Guidelines are identified by the following URI:
http://inspire.ec.europa.eu/tg/so/3.0
NOTE ISO 19131 suggests further identification information to be included in this section, e.g. the title, abstract or spatial representation type. The proposed items are already described in the document metadata, executive summary, overview description (section 2) and descriptions of the application schemas (section 5). In order to avoid redundancy, they are not repeated here.
Articles 3, 4 and 5 of the Implementing Rules lay down the requirements for the content and structure of the data sets related to the INSPIRE Annex themes.
📕
|
IR Requirement
|
The types to be used for the exchange and classification of spatial objects from data sets related to the spatial data theme Soil are defined in the following application schema (see section 5.3):
- Soil - Soil application schema contains the essential elements of a data model that allow the exchange of geo-referenced soil data.
The application schemas specify requirements on the properties of each spatial object including its multiplicity, domain of valid values, constraints, etc.
NOTE The application schemas presented in this section contain some additional information that is not included in the Implementing Rules, in particular multiplicities of attributes and association roles.
📒
|
TG Requirement 1 Spatial object types and data types shall comply with the multiplicities defined for the attributes and association roles in this section. |
An application schema may include references (e.g. in attributes or inheritance relationships) to common types or types defined in other spatial data themes. These types can be found in a sub-section called "Imported Types" at the end of each application schema section. The common types referred to from application schemas included in the IRs are addressed in Article 3.
📕
|
IR Requirement Types that are common to several of the themes listed in Annexes I, II and III to Directive 2007/2/EC shall conform to the definitions and constraints and include the attributes and association roles set out in Annex I. |
NOTE Since the IRs contain the types for all INSPIRE spatial data themes in one document, Article 3 does not explicitly refer to types defined in other spatial data themes, but only to types defined in external data models.
Common types are described in detail in the Generic Conceptual Model [DS-D2.7], in the relevant international standards (e.g. of the ISO 19100 series) or in the documents on the common INSPIRE models [DS-D2.10.x]. For detailed descriptions of types defined in other spatial data themes, see the corresponding Data Specification TG document [DS-D2.8.x].
In addition to the application schemas listed above, the following additional application schemas have been defined for the theme Soil (see Annex D)
- Soil Contamination – SoilContamination application schema demonstrates the extensibility of the core (legally mandated) SOIL data model to the field of the management of soil contaminated land.
These additional application schemas are not included in the IRs. They typically address requirements from specific (groups of) use cases and/or may be used to provide additional information. They are included in this specification in order to improve interoperability also for these additional aspects and to illustrate the extensibility of the application schemas included in the IRs.
📘
|
Recomendation 1 Additional and/or use case-specific information related to the theme Soil should be made available using the spatial object types and data types specified in the following application schema(s): SoilContamination, These spatial object types and data types should comply with the definitions and constraints and include the attributes and association roles defined in the Annex D. The enumerations and code lists used in attributes or association roles of spatial object types or data types should comply with the definitions and include the values defined in the Annex D. |
This section explains some of the basic notions used in the INSPIRE application schemas. These explanations are based on the GCM [DS-D2.5].
The application schemas included in this section are specified in UML, version 2.1. The spatial object types, their properties and associated types are shown in UML class diagrams.
NOTE For an overview of the UML notation, see Annex D in [ISO 19103].
The use of a common conceptual schema language (i.e. UML) allows for an automated processing of application schemas and the encoding, querying and updating of data based on the application schema – across different themes and different levels of detail.
The following important rules related to class inheritance and abstract classes are included in the IRs.
📕
|
IR Requirement (…)
|
The use of UML conforms to ISO 19109 8.3 and ISO/TS 19103 with the exception that UML 2.1 instead of ISO/IEC 19501 is being used. The use of UML also conforms to ISO 19136 E.2.1.1.1-E.2.1.1.4.
NOTE ISO/TS 19103 and ISO 19109 specify a profile of UML to be used in conjunction with the ISO 19100 series. This includes in particular a list of stereotypes and basic types to be used in application schemas. ISO 19136 specifies a more restricted UML profile that allows for a direct encoding in XML Schema for data transfer purposes.
To model constraints on the spatial object types and their properties, in particular to express data/data set consistency rules, OCL (Object Constraint Language) is used as described in ISO/TS 19103, whenever possible. In addition, all constraints are described in the feature catalogue in English, too.
NOTE Since "void" is not a concept supported by OCL, OCL constraints cannot include expressions to test whether a value is a void value. Such constraints may only be expressed in natural language.
In the application schemas in this section several stereotypes are used that have been defined as part of a UML profile for use in INSPIRE [DS-D2.5]. These are explained in Table 1 below.
Table 1 – Stereotypes (adapted from [DS-D2.5])
Stereotype |
Model element |
Description |
applicationSchema |
Package |
An INSPIRE application schema according to ISO 19109 and the Generic Conceptual Model. |
leaf |
Package |
A package that is not an application schema and contains no packages. |
featureType |
Class |
A spatial object type. |
type |
Class |
A type that is not directly instantiable, but is used as an abstract collection of operation, attribute and relation signatures. This stereotype should usually not be used in INSPIRE application schemas as these are on a different conceptual level than classifiers with this stereotype. |
dataType |
Class |
A structured data type without identity. |
union |
Class |
A structured data type without identity where exactly one of the properties of the type is present in any instance. |
enumeration |
Class |
An enumeration. |
codeList |
Class |
A code list. |
import |
Dependency |
The model elements of the supplier package are imported. |
voidable |
Attribute, association role |
A voidable attribute or association role (see section 5.2.2). |
lifeCycleInfo |
Attribute, association role |
If in an application schema a property is considered to be part of the life-cycle information of a spatial object type, the property shall receive this stereotype. |
version |
Association role |
If in an application schema an association role ends at a spatial object type, this stereotype denotes that the value of the property is meant to be a specific version of the spatial object, not the spatial object in general. |
The «voidable» stereotype is used to characterise those properties of a spatial object that may not be present in some spatial data sets, even though they may be present or applicable in the real world. This does not mean that it is optional to provide a value for those properties.
For all properties defined for a spatial object, a value has to be provided – either the corresponding value (if available in the data set maintained by the data provider) or the value of void. A void value shall imply that no corresponding value is contained in the source spatial data set maintained by the data provider or no corresponding value can be derived from existing values at reasonable costs.
📘
|
Recomendation 2 The reason for a void value should be provided where possible using a listed value from the VoidReasonValue code list to indicate the reason for the missing value. |
The VoidReasonValue type is a code list, which includes the following pre-defined values:
-
Unpopulated: The property is not part of the dataset maintained by the data provider. However, the characteristic may exist in the real world. For example when the "elevation of the water body above the sea level" has not been included in a dataset containing lake spatial objects, then the reason for a void value of this property would be 'Unpopulated'. The property receives this value for all spatial objects in the spatial data set.
-
Unknown: The correct value for the specific spatial object is not known to, and not computable by the data provider. However, a correct value may exist. For example when the "elevation of the water body above the sea level" of a certain lake has not been measured, then the reason for a void value of this property would be 'Unknown'. This value is applied only to those spatial objects where the property in question is not known.
-
Withheld: The characteristic may exist, but is confidential and not divulged by the data provider.
NOTE It is possible that additional reasons will be identified in the future, in particular to support reasons / special values in coverage ranges.
The «voidable» stereotype does not give any information on whether or not a characteristic exists in the real world. This is expressed using the multiplicity:
-
If a characteristic may or may not exist in the real world, its minimum cardinality shall be defined as 0. For example, if an Address may or may not have a house number, the multiplicity of the corresponding property shall be 0..1.
-
If at least one value for a certain characteristic exists in the real world, the minimum cardinality shall be defined as 1. For example, if an Administrative Unit always has at least one name, the multiplicity of the corresponding property shall be 1..*.
In both cases, the «voidable» stereotype can be applied. In cases where the minimum multiplicity is 0, the absence of a value indicates that it is known that no value exists, whereas a value of void indicates that it is not known whether a value exists or not.
EXAMPLE If an address does not have a house number, the corresponding Address object should not have any value for the «voidable» attribute house number. If the house number is simply not known or not populated in the data set, the Address object should receive a value of void (with the corresponding void reason) for the house number attribute.
Enumerations are modelled as classes in the application schemas. Their values are modelled as attributes of the enumeration class using the following modelling style:
-
No initial value, but only the attribute name part, is used.
-
The attribute name conforms to the rules for attributes names, i.e. is a lowerCamelCase name. Exceptions are words that consist of all uppercase letters (acronyms).
📕
|
IR Requirement (…) 5) Attributes or association roles of spatial object types or data types that have an enumeration type may only take values from the lists specified for the enumeration type." |
Code lists are modelled as classes in the application schemas. Their values, however, are managed outside of the application schema.
The IRs distinguish the following types of code lists.
📕
|
IR Requirement 1) Code lists shall be of one of the following types, as specified in the Annexes:
For the purposes of points (b), (c) and (d), in addition to the allowed values, data providers may use the values specified in the relevant INSPIRE Technical Guidance document available on the INSPIRE web site of the Joint Research Centre. |
The type of code list is represented in the UML model through the tagged value extensibility, which can take the following values:
-
none, representing code lists whose allowed values comprise only the values specified in the IRs (type a);
-
narrower, representing code lists whose allowed values comprise the values specified in the IRs and narrower values defined by data providers (type b);
-
open, representing code lists whose allowed values comprise the values specified in the IRs and additional values at any level defined by data providers (type c); and
-
any, representing code lists, for which the IRs do not specify any allowed values, i.e. whose allowed values comprise any values defined by data providers (type d).
📘
|
Recomendation 3 Additional values defined by data providers should not replace or redefine any value already specified in the IRs. |
NOTE This data specification may specify recommended values for some of the code lists of type (b), (c) and (d) (see section 5.2.4.3). These recommended values are specified in a dedicated Annex.
In addition, code lists can be hierarchical, as explained in Article 6(2) of the IRs.
📕
|
IR Requirement (…) 2) Code lists may be hierarchical. Values of hierarchical code lists may have a more generic parent value. Where the valid values of a hierarchical code list are specified in a table in this Regulation, the parent values are listed in the last column. |
The type of code list and whether it is hierarchical or not is also indicated in the feature catalogues.
📕
|
IR Requirement (….) 3) Where, for an attribute whose type is a code list as referred to in points (b), (c) or (d) of paragraph 1, a data provider provides a value that is not specified in this Regulation, that value and its definition shall be made available in a register. 4) Attributes or association roles of spatial object types or data types whose type is a code list may only take values that are allowed according to the specification of the code list. |
Article 6(4) obliges data providers to use only values that are allowed according to the specification of the code list. The "allowed values according to the specification of the code list" are the values explicitly defined in the IRs plus (in the case of code lists of type (b), (c) and (d)) additional values defined by data providers.
For attributes whose type is a code list of type (b), (c) or (d) data providers may use additional values that are not defined in the IRs. Article 6(3) requires that such additional values and their definition be made available in a register. This enables users of the data to look up the meaning of the additional values used in a data set, and also facilitates the re-use of additional values by other data providers (potentially across Member States).
NOTE Guidelines for setting up registers for additional values and how to register additional values in these registers is still an open discussion point between Member States and the Commission.
For code lists of type (b), (c) and (d), this data specification may propose additional values as a recommendation (in a dedicated Annex). These values will be included in the INSPIRE code list register. This will facilitate and encourage the usage of the recommended values by data providers since the obligation to make additional values defined by data providers available in a register (see section 5.2.4.2) is already met.
📘
|
Recomendation 4 Where these Technical Guidelines recommend values for a code list in addition to those specified in the IRs, these values should be used. |
NOTE For some code lists of type (d), no values may be specified in these Technical Guidelines. In these cases, any additional value defined by data providers may be used.
The following two types of code lists are distinguished in INSPIRE:
-
Code lists that are governed by INSPIRE (INSPIRE-governed code lists). These code lists will be managed centrally in the INSPIRE code list register. Change requests to these code lists (e.g. to add, deprecate or supersede values) are processed and decided upon using the INSPIRE code list register’s maintenance workflows.
INSPIRE-governed code lists will be made available in the INSPIRE code list register at http://inspire.ec.europa.eu/codelist/<CodeListName>. They will be available in SKOS/RDF, XML and HTML. The maintenance will follow the procedures defined in ISO 19135. This means that the only allowed changes to a code list are the addition, deprecation or supersession of values, i.e. no value will ever be deleted, but only receive different statuses (valid, deprecated, superseded). Identifiers for values of INSPIRE-governed code lists are constructed using the pattern http://inspire.ec.europa.eu/codelist/<CodeListName>/<value>. -
Code lists that are governed by an organisation outside of INSPIRE (externally governed code lists). These code lists are managed by an organisation outside of INSPIRE, e.g. the World Meteorological Organization (WMO) or the World Health Organization (WHO). Change requests to these code lists follow the maintenance workflows defined by the maintaining organisations. Note that in some cases, no such workflows may be formally defined.
Since the updates of externally governed code lists is outside the control of INSPIRE, the IRs and these Technical Guidelines reference a specific version for such code lists.
The tables describing externally governed code lists in this section contain the following columns:-
The Governance column describes the external organisation that is responsible for maintaining the code list.
-
The Source column specifies a citation for the authoritative source for the values of the code list. For code lists, whose values are mandated in the IRs, this citation should include the version of the code list used in INSPIRE. The version can be specified using a version number or the publication date. For code list values recommended in these Technical Guidelines, the citation may refer to the "latest available version".
-
In some cases, for INSPIRE only a subset of an externally governed code list is relevant. The subset is specified using the Subset column.
-
The Availability column specifies from where (e.g. URL) the values of the externally governed code list are available, and in which formats. Formats can include machine-readable (e.g. SKOS/RDF, XML) or human-readable (e.g. HTML, PDF) ones. +
-
Code list values are encoded using http URIs and labels. Rules for generating these URIs and labels are specified in a separate table.
📘
|
Recomendation 5 The http URIs and labels used for encoding code list values should be taken from the INSPIRE code list registry for INSPIRE-governed code lists and generated according to the relevant rules specified for externally governed code lists. |
NOTE Where practicable, the INSPIRE code list register could also provide http URIs and labels for externally governed code lists.
For each code list, a tagged value called "vocabulary" is specified to define a URI identifying the values of the code list. For INSPIRE-governed code lists and externally governed code lists that do not have a persistent identifier, the URI is constructed following the pattern http://inspire.ec.europa.eu/codelist/<UpperCamelCaseName.
If the value is missing or empty, this indicates an empty code list. If no sub-classes are defined for this empty code list, this means that any code list may be used that meets the given definition.
An empty code list may also be used as a super-class for a number of specific code lists whose values may be used to specify the attribute value. If the sub-classes specified in the model represent all valid extensions to the empty code list, the subtyping relationship is qualified with the standard UML constraint "\{complete,disjoint}".
📕
|
IR Requirement
|
NOTE 1 An external object identifier is a unique object identifier which is published by the responsible body, which may be used by external applications to reference the spatial object. [DS-D2.5]
NOTE 2 Article 9(1) is implemented in each application schema by including the attribute inspireId of type Identifier.
NOTE 3 Article 9(2) is ensured if the namespace and localId attributes of the Identifier remains the same for different versions of a spatial object; the version attribute can of course change.
📕
|
IR Requirement
|
NOTE 1 The specification restricts the spatial schema to 0-, 1-, 2-, and 2.5-dimensional geometries where all curve interpolations are linear and surface interpolations are performed by triangles.
NOTE 2 The topological relations of two spatial objects based on their specific geometry and topology properties can in principle be investigated by invoking the operations of the types defined in ISO 19107 (or the methods specified in EN ISO 19125-1).
The application schema(s) use(s) the derived attributes "beginLifespanVersion" and "endLifespanVersion" to record the lifespan of a spatial object.
The attributes "beginLifespanVersion" specifies the date and time at which this version of the spatial object was inserted or changed in the spatial data set. The attribute "endLifespanVersion" specifies the date and time at which this version of the spatial object was superseded or retired in the spatial data set.
NOTE 1 The attributes specify the beginning of the lifespan of the version in the spatial data set itself, which is different from the temporal characteristics of the real-world phenomenon described by the spatial object. This lifespan information, if available, supports mainly two requirements: First, knowledge about the spatial data set content at a specific time; second, knowledge about changes to a data set in a specific time frame. The lifespan information should be as detailed as in the data set (i.e., if the lifespan information in the data set includes seconds, the seconds should be represented in data published in INSPIRE) and include time zone information.
NOTE 2 Changes to the attribute "endLifespanVersion" does not trigger a change in the attribute "beginLifespanVersion".
📕
|
IR Requirement (…)
|
NOTE The requirement expressed in the IR Requirement above will be included as constraints in the UML data models of all themes.
📘
|
Recomendation 6 If life-cycle information is not maintained as part of the spatial data set, all spatial objects belonging to this data set should provide a void value with a reason of "unpopulated". |
The application schema(s) use(s) the attributes "validFrom" and "validTo" to record the validity of the real-world phenomenon represented by a spatial object.
The attributes "validFrom" specifies the date and time at which the real-world phenomenon became valid in the real world. The attribute "validTo" specifies the date and time at which the real-world phenomenon is no longer valid in the real world.
Specific application schemas may give examples what "being valid" means for a specific real-world phenomenon represented by a spatial object.
📕
|
IR Requirement (…)
|
NOTE The requirement expressed in the IR Requirement above will be included as constraints in the UML data models of all themes.
Coverage functions are used to describe characteristics of real-world phenomena that vary over space and/or time. Typical examples are temperature, elevation, precipitation, imagery. A coverage contains a set of such values, each associated with one of the elements in a spatial, temporal or spatio-temporal domain. Typical spatial domains are point sets (e.g. sensor locations), curve sets (e.g. isolines), grids (e.g. orthoimages, elevation models), etc.
In INSPIRE application schemas, coverage functions are defined as properties of spatial object types where the type of the property value is a realisation of one of the types specified in ISO 19123.
To improve alignment with coverage standards on the implementation level (e.g. ISO 19136 and the OGC Web Coverage Service) and to improve the cross-theme harmonisation on the use of coverages in INSPIRE, an application schema for coverage types is included in the Generic Conceptual Model in 9.9.4. This application schema contains the following coverage types:
-
RectifiedGridCoverage: coverage whose domain consists of a rectified grid – a grid for which there is an affine transformation between the grid coordinates and the coordinates of a coordinate reference system (see Figure 5, left).
-
ReferenceableGridCoverage: coverage whose domain consists of a referenceable grid – a grid associated with a transformation that can be used to convert grid coordinate values to values of coordinates referenced to a coordinate reference system (see Figure 5, right).
In addition, some themes make reference to the types TimeValuePair and Timeseries defined in Taylor, Peter (ed.), OGC® WaterML 2.0: Part 1 – Timeseries, v2.0.0, Open Geospatial Consortium, 2012. These provide a representation of the time instant/value pairs, i.e. time series (see Figure 6).
Where possible, only these coverage types (or a subtype thereof) are used in INSPIRE application schemas.
Figure 5 – Examples of a rectified grid (left) and a referenceable grid (right)
Figure 6 – Example of a time series
The Soil Model described in this chapter contains the essential elements of a data model that allows the exchange of geo-referenced soil data. The model is described in UML, which is then used as a base for the generation of XML Schema Definition (or .xsd) files, which in turn define the XML format that is to be used for the actual exchange of data.
The major spatial object types that can be distinguished in the Soil data model are:
-
SoilProfile (including Observed and Derived Soil Profiles)
-
ProfileElement (including SoilLayer and SoilHorizon)
-
SoilBody
-
SoilDerivedObject
-
SoilThemeCoverage and SoilThemeDescriptiveCoverage
-
SoilSite
-
SoilPlot
Their meaning and relationships are explained in the following paragraphs. All objects, apart from SoilThemeCoverage and SoilThemeDescriptiveCoverage, are presented in Figure 7– Vector, while Figure 8 presents the UML class diagram for these objects. The used data types and codelists are illustrated in and Figure 9 and Figure 10. The relation to Observations and Measurements is illustrated in Figure 11.
The concepts of "observed soil profile" and "derived soil profile" are represented through the classes ObservedSoilProfile and DerivedSoilProfile that are subtypes of the abstract class SoilProfile. (see Figure 7)
An observed soil profile represents a geo-referenced soil profile, described in the field, possibly sampled and analyzed in the laboratory.
A derived soil profile is a non-point-located soil profile with property values that are derived (e.g. averaged) from the values of the corresponding properties of one or more observed soil profiles. Even if such a connection to an observed soil profile exists, it is not mandatory to provide it (nor its data) together with the derived soil profile. Eventually, a derived soil profile could also be a standalone non-geo-referenced soil profile, not associated to an observed soil profile and with property values that are e.g. assessed by expert knowledge.
Any soil profile can be characterized as a whole by a number of properties, of which the following are included in the model: its soil type according to the WRB soil classification scheme (WRBSoilName) and/or any other soil classification scheme (otherSoilName) with the limitation to one per dataset, and zero or more other parameters, which are expressed through soilProfileObservation associations with OM_Observation objects (see Figure 11). Through the observedProperty role of its Phenomenon association, the OM_Observation object designates the parameter, through the attributes label, basePhenomenon (value selected from the codelist SoilProfileParameterNameValue) (see Figre 10) and uom (unit of measure). Through the result role of the Range association, a value can be given to the parameter; this value should be of the type Number, RangeType (a range of values) or CharacterString (e.g. 'good' or 'very high'). Note that the SoilProfileParameterNameValue codelist can be extended by the data provider when needed.
📕
|
IR Requirement Only one Other Soil Name Type classification shall be used for a dataset. |
To promote semantic interoperability and when possible, it is required to use WRB as a classification scheme. On top of inspireID, any soil profile can also be identified by a localIdentifier, which is a character string that allows tagging of the profile object with any information that relates the object to the originating data source of the data provider.
Note that the WRBSoilName is of type WRBSoilNameType that allows to give WRBSoilName a value according to the WRB structure defined for the WRB2006 update 2007 or later versions. The reference to the WRB version which is actually used is encoded through the values taken from the WRB related codelists (WRBReferenceSoilGroupValue, WRBQualifierValue, WRBSpecifierValue and WRBQualifierPlaceValue). If a SoilProfile is to be characterized by earlier versions of WRB (e.g. 1998), the otherSoilName attribute should be used.
Any instance of an ObservedSoilProfile is associated to exactly one instance of a soilPlot (see further) from which the soilPlotLocation attribute indicates the position (i.e. where it is located on the earth’s surface) and for which the soil data provides valid information.
Any soil profile, whether observed or derived, can be described by horizons and layers. Each horizon and layer can have a number of properties. In the model, layers and horizons are represented by the classes SoiLayer and SoilHorizon which are both subtypes of the abstract class ProfileElement. The abstract SoilProfile can consist of one or more ProfileElements.
A horizon or layer is at least characterized by an upper depth and a lower depth, indicating the top and the bottom depth of the horizon or layer from the surface; the attribute in the abstract ProfileElement class that indicates the depths of a horizon or layer is profileElementDepthRange.
The properties of horizons and layers are modelled through the profileElementObservation associations with OM_Observation objects (see Figure 11), in the same way as soil profile parameters are modelled, the only difference being that the parameter is selected from the codelist ProfileElementParameterNameValue (see Figure 10). Note that this codelist can be extended by the data provider when needed.
A horizon is further specified by a horizon name according to the FAO horizon notation scheme from 2006 (FAOHorizonNotation) and/or any other horizon notation schemes (otherHorizonNotation), with the limitation to one per a dataset. A horizon corresponds to a horizontal subdivision of the soil based on pedogenic processes.
📕
|
IR Requirement Only one Other Horizon Notation Type classification shall be used for a dataset. |
A layer corresponds to a horizontal subdivision of the soil based on other criteria than pedogenic processes. The way of defining a layer is specified by a layer type name that indicates the kind of layer considered: topsoil, subsoil, depthInterval or geogenic; this is modelled through the layerType attribute in the SoilLayer class. Topsoil and subsoil are complementary concepts used to address pedogenic process domains of the soil irrespective of a horizon description. Depth intervals are often used for chemical characterisation of the soil state and relate often to sampling depths. If the SoilLayer is of the type geogenic, it is described in terms of its non-pedogenic origin and can additionally be described by the following attributes: layerRockType (which gives petrographic or lithologic information on the rock type the layer is made of) and three attributes with reference to layer genesis (layerGenesisProcess, layerGenesisEnvironment, layerGenesisProcessState). Except for layerGenesisProcessState, the involved codelists originate from the INSPIRE Data Specification on Geology.
Note that the values in the codelists SoilProfileParameterNameValue and ProfileElementParameterNameValue (see Figure 10) in this version of the model correspond to requirements concerning soil property data in some European legislation.
Note that, since the parameters for soilProfile, ProfileElement and soilDerivedObject (see below) are linked (through the O&M framework, see Figure 11)) to OM_Observation, which in turn is associated to INSPIRE_OM_Process, it is possible to provide additional information on the process that led to observation values. For example, if soil pH is measured in a salt solution, the kind and concentration of the salt solution as well as the solution to soil proportion and the type of device used can be stated.
📕
|
IR Requirement The values of the first level hierarchical code lists: ProfileElementParameterNameValue, SoilDerivedObjectParameterNameValue, SoilProfileParameterNameValue, SoilSiteParameterNameValue (chemicalParameter, biologicalParameter, physicalParameter) serve only the purpose of structuring; only the lower-level values shall be used. |
To delineate geographically areas with a soil cover that can be characterized by a set of derived soil profiles, the model introduces the construct of the SoilBody class (see Figure 7). It represents an association (or other types of spatial linkages of various soil types) of derived soil profiles that represent the soils found together in the area of the SoilBody. The area is specified by the geometry attribute of the SoilBody. The presence of one or more kinds of soils in the SoilBody is modelled with the association class DerivedProfilePresenceInSoilBody, which allows to indicate which derived soil profiles are used to describe the soils of the SoilBody, and to which extent (expressed as a couple of area share percentages). The couple of percentages offer the flexibility to give a range of percentages to express uncertainty on the presence of any soil type. If only one percentage value is to be used, lower and upper boundaries of the couple of percentages should have identical values. Because of this flexibility with ranges of percentages, it is allowed that the sum of all percentage upper boundaries for the derived soil profiles in one soil body is greater than 100%. However, there is the constraint that the sum of all percentage lower boundaries for the derived soil profiles in one soil body is lower than or equal to 100%.
As an example, a SoilBody could consist of one dominant soil (as described by a derived soil profile) and of other soils (described by other derived soil profiles) having characteristics different from the dominant one. A derived soil profile can be used to characterize more than one SoilBody.
The soilBodyLabel attribute of the SoilBody allows a description of the SoilBody, which may be useful for building legends. The soilBodyLabel contributes to the explanation of a mapping unit of a map, whereas in the metadata linked to the dataset to which the object belongs, a reference should be given to documentation that further explains the labelling of the soil bodies.
Note that although the geometry (polygon areas) of the SoilBody is known and also how much area within it is covered by each of the soils in the area, expressed as a range of percentages, the exact location and spatial pattern of each kind of soils within the SoilBody is not defined.
In the context of the model, a SoilDerivedObject (Figure 7) is defined as a spatial object (e.g. a point, line, polygon) representing a soil-related property (using the association soilDerivedObjectObservation with an OM_Observation object, see Figure 11) which value can be (but does not have to be) derived from a) values of soil properties of related observed soil profiles and/or related soil bodies, and/or b) any other data or information intern or extern to the model (for example: instances of other SoilDerivedObjects (intern); landcover/climate data (extern)). A collection of such SoilDerivedObjects constitutes a soil thematic map, and is to be regarded as a dataset. The metadata linked to such a dataset provides the details on how the values for the attributes of the SoilDerivedObjects have been calculated.
The geometry attribute of the SoilDerivedObject specifies type and location of the geographical object (e.g. a polygon or a point). Through the association soilDerivedObjectObservation with an OM_Observation object, a parameter is designated and given a value, in the same way as parameters for the soil profiles and profile elements. The parameter is selected from the codelist SoilDerivedObjectParameterNameValue (see Figure 10); note that this code list can be extended by the data provider when needed.
At SoilDerivedObject object level, the value for the associated parameter in the associated OM_Observation object can be accompanied by zero or more values that provide supplementary information to it. This information is given in zero or more parameter attributes of the OM_Observation object and which values are of the type NamedValue. The class NamedValue provides for a generic soft-typed parameter value. NamedValue supports two attributes: name (datatype: GenericName) that indicates the meaning of the named value, and value (datatype: Any) that provides the value. The type Any should be substituted by a suitable concrete type, e.g. Number.
📕
|
IR Requirement When an additional descriptive parameter for the soil derived object is needed, the parameter attribute of the OM_Observation spatial object type shall be used. |
One example of the use of the parameter attribute in the OM_Observation object is for the construction of so-called "purity maps". When one wants to construct a SoilDerivedObject with as geometry a polygon P and with a parameter that contains a value indicating a soil property A (e.g. WaterDrainageClass), based on values for that same property that are found in the DerivedSoilProfile-s associated to a SoilBody covering the same polygon, one could select the value for WaterDrainageClass for the DerivedSoilProfile that is dominant. This is an interpretation of the data and when depicting A as a value in polygon P, the viewer should know that this value is not "pure" and that an amount of information is lost through interpretation. The "purity" of the value for A could be indicated in the parameter attribute of the linked OM_Observation object, which could have a NamedValue consisting of name purity and a value between 0 and 100, computed from the proportions of the DerivedSoilProfiles composing the SoilBody.
Because the multiplicity of the associations between the SoilDerivedObject and the SoilBody and ObservedSoilProfile is "0.." (i.e. zero to many), the SoilDerivedObject class also accommodates for so-called "soil thematic maps" in which the spatial information on a soil property is *not related to any of the soil objects in the model.
Note that the set of name values in the codelist SoilDerivedObjectParameterNameValue in this version of the model corresponds to the union of name values of the code lists SoilProfileParameterNameValue and ProfileElementParameterNameValue, which in turn correspond to requirements concerning soil property data in some European legislation.
A collection of SoilDerivedObjects that may consist of points, lines and/or polygons, is not meant for the exchange of soil thematic data as raster datasets. This feature is implemented with the SoilThemeCoverage class.
The specific purpose of the SoilThemeCoverage class (see Figure 8) is to provide a structure for the interchange of soil thematic maps as continuous phenomena. The geometry is represented as a coverage which is defined as a "feature that acts as a function to return values from its range for any direct position within its spatial, temporal or spatiotemporal domain". For soil this commonly is a rectified grid.
The attribute soilThemeParameter is of the datatype SoilThemeParameterType that consists of a soilThemeParameterName (to be taken from the codelist SoilDerivedObjectParameterNameValue, e.g. organicCarbonContent) (see Figure 10) and a unit of measure (e.g. cm). Note that the code list SoilDerivedObjectParameterNameValue can be extended by the data provider when needed.
The values of the gridcells are covered by a rangeSet constraint that says that values shall be of one of the types Number; RangeType or CharacterString.
Since it may be useful to associate to a coverage other coverages of which the cell values are supplementary information to the corresponding grid cells of the coverage itself, the SoilThemeCoverage class has an association to another coverage, the SoilThemeDescriptiveCoverage. The SoilThemeDescriptiveCoverage has the same spatial and domain extent as the associated SoilThemeCoverage. The attribute soilThemeDescriptiveParameter is of the datatype SoilThemeDescriptiveParameterType that consists of a soilThemeDescriptiveParameterName (characterstring, e.g. purity) and a unit of measure (e.g. cm). The soilThemeDescriptiveParameter gives supplementary information on the grid cell values of the associated coverage, often it concerns qualitative information. An example would be the provision of "purity maps" in relation to for instance soil texture maps.
A "soil site" is considered as a wider geographical area, i.e. the larger piece of land where soil investigation takes place in one or more spots, called soil plots. A site represents often just the geographically not strictly defined environment of the plots; thus, the geometry attribute of the soil site can be a surface or a point location. In soil survey and general soil monitoring, all soil information gathered on one site is handled as if it would have been collected at the very same location, which is impossible in the strict sense in the real world whenever soil investigation is destructive. The purpose of this investigation can be general (e.g. taking soil profiles for a general soil characterization) or specific (e.g. sampling to investigate potentially contaminated land). The soil plot object is included in the model to provide the type and location of the associated observed soil profile. A soil plot within a soil site is of a certain type (borehole, sample, trial pit) and located by a geographical point and/or the name of a location.
To a soil plot, one observed soil profile must be associated.
A soil site is represented in the model with the SoilSite class (see Figure 7). Its soilInvestigationPurpose attribute indicates the purpose of investigation: general (generalSoilSurvey) or specific (specificSoilSurvey). This kind of information can be crucial for data evaluation to identify bias in the selection of sites.
The possible properties of a soil site are modelled through the soilSiteObservation associations with OM_Observation objects (see Figure 11), in the same way as soil profile parameters are modelled, the only difference being that the parameter is selected from the codelist SoilSiteParameterNameValue. Note that this codelist can be extended by the data provider when needed.
A soil plot is represented in the model with the SoilPlot class. A SoilSite comprises one or more SoilPlot-s. A soil plot is of a certain type (soilPlotType), and its location is indicated by the attribute soilPlotLocation which can take the form of either a specific X,Y-location or a description of the location using text or an identifier.
For the data specifications of soil, the Observations & Measurements standard (O & M) is used (see Figure 11). The Observations & Measurements standard defines a domain-independent conceptual model for the representation of (spatiotemporal) measurement and other observation data. ISO 19156 defines an application schema as a reference schema for data required by one or more applications. O & M can be used as a generic means to deal with measurements and other observations in a standardized way. From that standard, OM_Observation is used in the soil model; from the INSPIRE O&M package, the INSPIRE_OM_Process and the data type ObservableProperty are used in the soil model. This means that for each observation the phenomenonTime and resultTime are always used and additional properties may be used. The resultTime for soil is usually the same time as the PhenomenonTime unless the analysis is not carried out in the field. For the process information, at least a name and a responsible party have to be provided. Additionally, other properties that refer to online or offline documentation can be used. When needed, process parameters can be provided. For instance, for the soil profile parameter with the name carbonStock, which is placed in the basePhenomenon attribute of the ObservableProperty type, the processParameter attribute of the INSPIRE_OM_Process class (that is linked to the ObservableProperty) could hold a value that indicates the depth to which this carbonStock value pertains.
In the model, all the information related to the observation is considered to be the evidence of the value of the property belonging to the feature of interest (i.e. the relevant soil object). This evidence is associated to the feature of interest. In the soil application schema, this is associated to either soilProfile, ProfileElement, SoilDerivedObject or SoilSite as being the "feature of interest".
Figure 7 – UML class diagram: Overview of the SOIL application schema (Vector part)
Figure 8 - UML class diagram: Overview of the SOIL application schema (Coverages part)
Figure 9 - UML class diagram: Overview of the SOIL data types
Figure 10 – UML class diagram: Overview of the SOIL code lists
Figure 11 - UML class diagram: Overview of the SOIL relation with O&M classes
Feature catalogue metadata
Application Schema |
INSPIRE Application Schema Soil |
Version number |
3.0 |
Types defined in the feature catalogue
Type |
Package |
Stereotypes |
DerivedProfilePresenceInSoilBody |
Soil |
«associationType» |
DerivedSoilProfile |
Soil |
«featureType» |
FAOHorizonMasterValue |
Soil |
«codelist» |
FAOHorizonNotationType |
Soil |
«dataType» |
FAOHorizonSubordinateValue |
Soil |
«codelist» |
FAOPrimeValue |
Soil |
«codelist» |
LayerGenesisProcessStateValue |
Soil |
«codelist» |
LayerTypeValue |
Soil |
«codelist» |
ObservedSoilProfile |
Soil |
«featureType» |
OtherHorizonNotationType |
Soil |
«dataType» |
OtherHorizonNotationTypeValue |
Soil |
«codelist» |
OtherSoilNameType |
Soil |
«dataType» |
OtherSoilNameTypeValue |
Soil |
«codelist» |
ParticleSizeFractionType |
Soil |
«dataType» |
ProfileElement |
Soil |
«featureType» |
ProfileElementParameterNameValue |
Soil |
«codelist» |
RangeType |
Soil |
«dataType» |
SoilBody |
Soil |
«featureType» |
SoilDerivedObject |
Soil |
«featureType» |
SoilDerivedObjectParameterNameValue |
Soil |
«codelist» |
SoilHorizon |
Soil |
«featureType» |
SoilInvestigationPurposeValue |
Soil |
«codelist» |
SoilLayer |
Soil |
«featureType» |
SoilPlot |
Soil |
«featureType» |
SoilPlotTypeValue |
Soil |
«codelist» |
SoilProfile |
Soil |
«featureType» |
SoilProfileParameterNameValue |
Soil |
«codelist» |
SoilSite |
Soil |
«featureType» |
SoilSiteParameterNameValue |
Soil |
«codelist» |
SoilThemeCoverage |
Soil |
«featureType» |
SoilThemeDescriptiveCoverage |
Soil |
«featureType» |
SoilThemeDescriptiveParameterType |
Soil |
«dataType» |
SoilThemeParameterType |
Soil |
«dataType» |
WRBQualifierGroupType |
Soil |
«dataType» |
WRBQualifierPlaceValue |
Soil |
«codelist» |
WRBQualifierValue |
Soil |
«codelist» |
WRBReferenceSoilGroupValue |
Soil |
«codelist» |
WRBSoilNameType |
Soil |
«dataType» |
WRBSpecifierValue |
Soil |
«codelist» |
DerivedProfilePresenceInSoilBody |
||||||||||||
|
DerivedSoilProfile |
|||||||||||||||
|
|||||||||||||||
Association role: isDerivedFrom
|
ObservedSoilProfile |
|||||||||||||||
|
|||||||||||||||
Association role: location
|
ProfileElement (abstract) |
||||||||||||||||||
|
||||||||||||||||||
Attribute: inspireId
|
||||||||||||||||||
Attribute: particleSizeFraction
|
||||||||||||||||||
Attribute: profileElementDepthRange
|
||||||||||||||||||
Attribute: beginLifespanVersion
|
||||||||||||||||||
Attribute: endLifespanVersion
|
||||||||||||||||||
Association role: isPartOf
|
||||||||||||||||||
Constraint: code list for profile element observations
|
||||||||||||||||||
Constraint: FoI of profile element observations
|
||||||||||||||||||
Constraint: result of profile element observations
|
SoilBody |
||||||||||||||||||
|
||||||||||||||||||
Attribute: inspireId
|
||||||||||||||||||
Attribute: geometry
|
||||||||||||||||||
Attribute: soilBodyLabel
|
||||||||||||||||||
Attribute: beginLifespanVersion
|
||||||||||||||||||
Attribute: endLifespanVersion
|
||||||||||||||||||
Association role: isDescribedBy [the association has additional attributes - see association class DerivedProfilePresenceInSoilBody]
|
SoilDerivedObject |
|||||||||||||||
|
|||||||||||||||
Attribute: inspireId
|
|||||||||||||||
Attribute: geometry
|
|||||||||||||||
Association role: isBasedOnSoilDerivedObject
|
|||||||||||||||
Association role: isBasedOnObservedSoilProfile
|
|||||||||||||||
Association role: isBasedOnSoilBody
|
|||||||||||||||
Constraint: code list for parameter of soil derived objects
|
|||||||||||||||
Constraint: FoI of Soil derived object observations
|
|||||||||||||||
Constraint: results of soil derived object observations
|
SoilHorizon |
||||||||||||||||||
|
||||||||||||||||||
Attribute: FAOHorizonNotation
|
||||||||||||||||||
Attribute: otherHorizonNotation
|
SoilLayer |
||||||||||||||||||
|
||||||||||||||||||
Attribute: layerType
|
||||||||||||||||||
Attribute: layerRockType
|
||||||||||||||||||
Attribute: layerGenesisProcess
|
||||||||||||||||||
Attribute: layerGenesisEnvironment
|
||||||||||||||||||
Attribute: layerGenesisProcessState
|
||||||||||||||||||
Constraint: geogenicConstraint
|
SoilPlot |
|||||||||||||||
|
|||||||||||||||
Attribute: inspireId
|
|||||||||||||||
Attribute: soilPlotLocation
|
|||||||||||||||
Attribute: soilPlotType
|
|||||||||||||||
Attribute: beginLifespanVersion
|
|||||||||||||||
Attribute: endLifespanVersion
|
|||||||||||||||
Association role: locatedOn
|
|||||||||||||||
Association role: observedProfile
|
SoilProfile (abstract) |
||||||||||||||||||
|
||||||||||||||||||
Attribute: inspireId
|
||||||||||||||||||
Attribute: localIdentifier
|
||||||||||||||||||
Attribute: WRBSoilName
|
||||||||||||||||||
Attribute: otherSoilName
|
||||||||||||||||||
Attribute: validFrom
|
||||||||||||||||||
Attribute: validTo
|
||||||||||||||||||
Attribute: beginLifespanVersion
|
||||||||||||||||||
Attribute: endLifespanVersion
|
||||||||||||||||||
Association role: isDescribedBy
|
||||||||||||||||||
Constraint: code list for soil profile observations
|
||||||||||||||||||
Constraint: FoI of soil profile observations
|
||||||||||||||||||
Constraint: result of soil profile observations
|
SoilSite |
|||||||||||||||
|
|||||||||||||||
Attribute: inspireId
|
|||||||||||||||
Attribute: geometry
|
|||||||||||||||
Attribute: soilInvestigationPurpose
|
|||||||||||||||
Attribute: validFrom
|
|||||||||||||||
Attribute: validTo
|
|||||||||||||||
Attribute: beginLifespanVersion
|
|||||||||||||||
Attribute: endLifespanVersion
|
|||||||||||||||
Association role: isObservedOnLocation
|
|||||||||||||||
Constraint: code list for soil site observations
|
|||||||||||||||
Constraint: FoI of soil site observations
|
|||||||||||||||
Constraint: result of soil site observations
|
SoilThemeCoverage |
|||||||||||||||
|
|||||||||||||||
Attribute: beginLifespanVersion
|
|||||||||||||||
Attribute: endLifespanVersion
|
|||||||||||||||
Attribute: domainExtent
|
|||||||||||||||
Attribute: validTimeFrom
|
|||||||||||||||
Attribute: validTimeTo
|
|||||||||||||||
Attribute: soilThemeParameter
|
|||||||||||||||
Association role: isDescribedBy
|
|||||||||||||||
Constraint: rangeSetValuesConstraint
|
SoilThemeDescriptiveCoverage |
|||||||||||||||
|
|||||||||||||||
Attribute: beginLifespanVersion
|
|||||||||||||||
Attribute: endLifespanVersion
|
|||||||||||||||
Attribute: domainExtent
|
|||||||||||||||
Attribute: soilThemeDescriptiveParameter
|
|||||||||||||||
Association role: isDescribing
|
|||||||||||||||
Constraint: rangeSetValuesConstraint
|
DerivedProfilePresenceInSoilBody (association class) |
|||||||||||||||
|
|||||||||||||||
Attribute: derivedProfilePercentageRange
|
FAOHorizonNotationType |
|||||||||||||||
|
|||||||||||||||
Attribute: FAOHorizonDiscontinuity
|
|||||||||||||||
Attribute: FAOHorizonMaster
|
|||||||||||||||
Attribute: FAOPrime
|
|||||||||||||||
Attribute: FAOHorizonSubordinate
|
|||||||||||||||
Attribute: FAOHorizonVertical
|
|||||||||||||||
Attribute: isOriginalClassification
|
OtherHorizonNotationType |
|||||||||||||||
|
|||||||||||||||
Attribute: horizonNotation
|
|||||||||||||||
Attribute: isOriginalClassification
|
OtherHorizonNotationType | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||||
Attribute: horizonNotation
|
|||||||||||||||
Attribute: isOriginalClassification
|
OtherSoilNameType | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||||
Attribute: soilName
|
|||||||||||||||
Attribute: isOriginalClassification
|
ParticleSizeFractionType | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||||
Attribute: fractionContent
|
|||||||||||||||
Attribute: fractionParticleSizeRange
|
RangeType | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
||||||||||||
Attribute: upperValue
|
||||||||||||
Attribute: lowerValue
|
||||||||||||
Attribute: uom
|
||||||||||||
Constraint: intervalConstraint
|
SoilThemeDescriptiveParameterType | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||||
Attribute: soilThemeDescriptiveParameterName
|
|||||||||||||||
Attribute: uom
|
SoilThemeParameterType | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||||
Attribute: soilThemeParameterName
|
|||||||||||||||
Attribute: uom
|
WRBQualifierGroupType | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||||
Attribute: qualifierPlace
|
|||||||||||||||
Attribute: qualifierPosition
|
|||||||||||||||
Attribute: WRBqualifier
|
|||||||||||||||
Attribute: WRBspecifier
|
WRBSoilNameType | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||||
Attribute: WRBQualifierGroup
|
|||||||||||||||
Attribute: WRBReferenceSoilGroup
|
|||||||||||||||
Attribute: isOriginalClassification
|
|||||||||||||||
Association role: over
|
FAOHorizonMasterValue | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
FAOHorizonSubordinateValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
FAOPrimeValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
LayerGenesisProcessStateValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
LayerTypeValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
OtherHorizonNotationTypeValue | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
OtherSoilNameTypeValue | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
ProfileElementParameterNameValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
SoilDerivedObjectParameterNameValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
SoilInvestigationPurposeValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
SoilPlotTypeValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
SoilProfileParameterNameValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
SoilSiteParameterNameValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
WRBQualifierPlaceValue | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
WRBQualifierValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
WRBReferenceSoilGroupValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
WRBSpecifierValue | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
This section lists definitions for feature types, data types and enumerations and code lists that are defined in other application schemas. The section is purely informative and should help the reader understand the feature catalogue presented in the previous sections. For the normative documentation of these types, see the given references.
Boolean | ||||||
---|---|---|---|---|---|---|
|
CharacterString | ||||||
---|---|---|---|---|---|---|
|
Date | ||||||
---|---|---|---|---|---|---|
|
DateTime | ||||||
---|---|---|---|---|---|---|
|
EX_Extent | ||||||
---|---|---|---|---|---|---|
|
EventEnvironmentValue | |||||||||
---|---|---|---|---|---|---|---|---|---|
|
EventProcessValue | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
GM_MultiSurface | ||||||
---|---|---|---|---|---|---|
|
GM_Object (abstract) | ||||||
---|---|---|---|---|---|---|
|
Identifier | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Integer | ||||||
---|---|---|---|---|---|---|
|
LithologyValue | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Location | ||||||
---|---|---|---|---|---|---|
|
Number (abstract) | ||||||
---|---|---|---|---|---|---|
|
Real | ||||||
---|---|---|---|---|---|---|
|
RectifiedGridCoverage | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
The externally governed code lists included in this application schema are specified in the tables in this section and in Annex C.
Code list | Governance | Authoritative Source (incl. version*[14] *and relevant subset, where applicable) |
---|---|---|
FAOHorizonMasterValue |
Food and Agriculture Organization of the United Nations |
Guidelines for soil description, 4th edition, Food and Agriculture Organization of the United Nations, Rome, 2006, pp. 67-77. |
FAOHorizonSubordinateValue |
Food and Agriculture Organization of the United Nations |
Guidelines for soil description, 4th edition, Food and Agriculture Organization of the United Nations, Rome, 2006, pp. 67-77. |
FAOPrimeValue |
Food and Agriculture Organization of the United Nations |
Guidelines for soil description, 4th edition, Food and Agriculture Organization of the United Nations, Rome, 2006, pp. 67-77. |
WRBQualifierPlaceValue |
Food and Agriculture Organization of the United Nations |
World reference base for soil resources 2006, first update 2007, World Soil Resources Reports No. 103, Food and Agriculture Organization of the United Nations, Rome, 2007. |
WRBQualifierValue |
Food and Agriculture Organization of the United Nations |
World reference base for soil resources 2006, first update 2007, World Soil Resources Reports No. 103, Food and Agriculture Organization of the United Nations, Rome, 2007. |
WRBReferenceSoilGroupValue |
Food and Agriculture Organization of the United Nations |
World reference base for soil resources 2006, first update 2007, World Soil Resources Reports No. 103, Food and Agriculture Organization of the United Nations, Rome, 2007. |
WRBSpecifierValue |
Food and Agriculture Organization of the United Nations |
World reference base for soil resources 2006, first update 2007, World Soil Resources Reports No. 103, Food and Agriculture Organization of the United Nations, Rome, 2007. |
Code list | Availability | Format |
---|---|---|
FAOHorizonMasterValue |
ftp://ftp.fao.org/agl/agll/docs/guidel_soil_descr.pdf (p. 67-71) |
|
FAOHorizonSubordinateValue |
ftp://ftp.fao.org/agl/agll/docs/guidel_soil_descr.pdf (p. 72 Table 85) |
|
FAOPrimeValue |
ftp://ftp.fao.org/agl/agll/docs/guidel_soil_descr.pdf (p. 77) |
|
WRBQualifierPlaceValue |
http://www.fao.org/fileadmin/templates/nr/images/resources/pdf_documents/wrb2007_red.pdf (p. 51-66) |
|
WRBQualifierValue |
http://www.fao.org/fileadmin/templates/nr/images/resources/pdf_documents/wrb2007_red.pdf (p. 97-107) |
|
WRBReferenceSoilGroupValue |
http://www.fao.org/fileadmin/templates/nr/images/resources/pdf_documents/wrb2007_red.pdf (p. 51-66) |
|
WRBSpecifierValue |
http://www.fao.org/fileadmin/templates/nr/images/resources/pdf_documents/wrb2007_red.pdf (p. 107) |
NOTE All the externally managed code lists and their values are presented in the Annex C of this document
==
Reference systems, units of measure and grids
The reference systems, units of measure and geographic grid systems included in this sub-section are the defaults to be used for all INSPIRE data sets, unless theme-specific exceptions and/or additional requirements are defined in section 6.2.
📕
|
IR Requirement Annex II, Section 1.2 Datum for three-dimensional and two-dimensional coordinate reference systems For the three-dimensional and two-dimensional coordinate reference systems and the horizontal component of compound coordinate reference systems used for making spatial data sets available, the datum shall be the datum of the European Terrestrial Reference System 1989 (ETRS89) in areas within its geographical scope, or the datum of the International Terrestrial Reference System (ITRS) or other geodetic coordinate reference systems compliant with ITRS in areas that are outside the geographical scope of ETRS89. Compliant with the ITRS means that the system definition is based on the definition of the ITRS and there is a well documented relationship between both systems, according to EN ISO 19111. |
📕
|
IR Requirement Annex II, Section 1.3 Coordinate Reference Systems Spatial data sets shall be made available using at least one of the coordinate reference systems specified in sections 1.3.1, 1.3.2 and 1.3.3, unless one of the conditions specified in section 1.3.4 holds. 1.3.1. Three-dimensional Coordinate Reference Systems |
-
Three-dimensional Cartesian coordinates based on a datum specified in 1.2 and using the parameters of the Geodetic Reference System 1980 (GRS80) ellipsoid.
-
Three-dimensional geodetic coordinates (latitude, longitude and ellipsoidal height) based on a datum specified in 1.2 and using the parameters of the GRS80 ellipsoid.
1.3.2. Two-dimensional Coordinate Reference Systems
* Two-dimensional geodetic coordinates (latitude and longitude) based on a datum specified in 1.2 and using the parameters of the GRS80 ellipsoid.
* Plane coordinates using the ETRS89 Lambert Azimuthal Equal Area coordinate reference system.
* Plane coordinates using the ETRS89 Lambert Conformal Conic coordinate reference system.
* Plane coordinates using the ETRS89 Transverse Mercator coordinate reference system.
1.3.3. Compound Coordinate Reference Systems
1. For the horizontal component of the compound coordinate reference system, one of the coordinate reference systems specified in section 1.3.2 shall be used.
2. For the vertical component, one of the following coordinate reference systems shall be used:
* For the vertical component on land, the European Vertical Reference System (EVRS) shall be used to express gravity-related heights within its geographical scope. Other vertical reference systems related to the Earth gravity field shall be used to express gravity-related heights in areas that are outside the geographical scope of EVRS.
* For the vertical component in the free atmosphere, barometric pressure, converted to height using ISO 2533:1975 International Standard Atmosphere, or other linear or parametric reference systems shall be used. Where other parametric reference systems are used, these shall be described in an accessible reference using EN ISO 19111-2:2012.
* For the vertical component in marine areas where there is an appreciable tidal range (tidal waters), the Lowest Astronomical Tide (LAT) shall be used as the reference surface.
* For the vertical component in marine areas without an appreciable tidal range, in open oceans and effectively in waters that are deeper than 200 meters, the Mean Sea Level (MSL) or a well-defined reference level close to the MSL shall be used as the reference surface.
1.3.4. Other Coordinate Reference Systems
Exceptions, where other coordinate reference systems than those listed in 1.3.1, 1.3.2 or 1.3.3 may be used, are:
1. Other coordinate reference systems may be specified for specific spatial data themes in this Annex.
2. For regions outside of continental Europe, Member States may define suitable coordinate reference systems.
The geodetic codes and parameters needed to describe these coordinate reference systems and to allow conversion and transformation operations shall be documented and an identifier shall be created, according to EN ISO 19111 and ISO 19127.
📕
|
IR Requirement Annex II, Section 1.4 Coordinate Reference Systems used in the View Network Service For the display of spatial data sets with the view network service as specified in Regulation No 976/2009, at least the coordinate reference systems for two-dimensional geodetic coordinates (latitude, longitude) shall be available. |
📕
|
IR Requirement Annex II, Section 1.5 Coordinate Reference System Identifiers 1. Coordinate reference system parameters and identifiers shall be managed in one or several common registers for coordinate reference systems. 2. Only identifiers contained in a common register shall be used for referring to the coordinate reference systems listed in this Section. |
These Technical Guidelines propose to use the http URIs provided by the Open Geospatial Consortium as coordinate reference system identifiers (see identifiers for the default CRSs below). These are based on and redirect to the definition in the EPSG Geodetic Parameter Registry (http://www.epsg-registry.org/).
📒
|
TG Requirement 2 The identifiers listed in Table 2 shall be used for referring to the coordinate reference systems used in a data set. |
NOTE CRS identifiers may be used e.g. in:
-
data encoding,
-
data set and service metadata, and
-
requests to INSPIRE network services.
Table 2. http URIs for the default coordinate reference systems
Coordinate reference system | Short name | http URI identifier |
---|---|---|
3D Cartesian in ETRS89 |
ETRS89-XYZ |
|
3D geodetic in ETRS89 on GRS80 |
ETRS89-GRS80h |
|
2D geodetic in ETRS89 on GRS80 |
ETRS89-GRS80 |
|
2D LAEA projection in ETRS89 on GRS80 |
ETRS89-LAEA |
|
2D LCC projection in ETRS89 on GRS80 |
ETRS89-LCC |
|
2D TM projection in ETRS89 on GRS80, zone 26N (30°W to 24°W) |
ETRS89-TM26N |
|
2D TM projection in ETRS89 on GRS80, zone 27N (24°W to 18°W) |
ETRS89-TM27N |
|
2D TM projection in ETRS89 on GRS80, zone 28N (18°W to 12°W) |
ETRS89-TM28N |
|
2D TM projection in ETRS89 on GRS80, zone 29N (12°W to 6°W) |
ETRS89-TM29N |
|
2D TM projection in ETRS89 on GRS80, zone 30N (6°W to 0°) |
ETRS89-TM30N |
|
2D TM projection in ETRS89 on GRS80, zone 31N (0° to 6°E) |
ETRS89-TM31N |
|
2D TM projection in ETRS89 on GRS80, zone 32N (6°E to 12°E) |
ETRS89-TM32N |
|
2D TM projection in ETRS89 on GRS80, zone 33N (12°E to 18°E) |
ETRS89-TM33N |
|
2D TM projection in ETRS89 on GRS80, zone 34N (18°E to 24°E) |
ETRS89-TM34N |
|
2D TM projection in ETRS89 on GRS80, zone 35N (24°E to 30°E) |
ETRS89-TM35N |
|
2D TM projection in ETRS89 on GRS80, zone 36N (30°E to 36°E) |
ETRS89-TM36N |
|
2D TM projection in ETRS89 on GRS80, zone 37N (36°E to 42°E) |
ETRS89-TM37N |
|
2D TM projection in ETRS89 on GRS80, zone 38N (42°E to 48°E) |
ETRS89-TM38N |
|
2D TM projection in ETRS89 on GRS80, zone 39N (48°E to 54°E) |
ETRS89-TM39N |
|
Height in EVRS |
EVRS |
|
3D compound: 2D geodetic in ETRS89 on GRS80, and EVRS height |
ETRS89-GRS80-EVRS |
📕
|
IR Requirement Article 11 Temporal Reference Systems 1. The default temporal reference system referred to in point 5 of part B of the Annex to Commission Regulation (EC) No 1205/2008 ([15]) shall be used, unless other temporal reference systems are specified for a specific spatial data theme in Annex II. |
NOTE 1 Point 5 of part B of the Annex to Commission Regulation (EC) No 1205/2008 (the INSPIRE Metadata IRs) states that the default reference system shall be the Gregorian calendar, with dates expressed in accordance with ISO 8601.
NOTE 2 ISO 8601 Data elements and interchange formats – Information interchange – Representation of dates and times is an international standard covering the exchange of date and time-related data. The purpose of this standard is to provide an unambiguous and well-defined method of representing dates and times, so as to avoid misinterpretation of numeric representations of dates and times, particularly when data is transferred between countries with different conventions for writing numeric dates and times. The standard organizes the data so the largest temporal term (the year) appears first in the data string and progresses to the smallest term (the second). It also provides for a standardized method of communicating time-based information across time zones by attaching an offset to Coordinated Universal Time (UTC).
EXAMPLE 1997 (the year 1997), 1997-07-16 (16th July 1997), 1997-07-16T19:20:3001:00 (16th July 1997, 19h 20' 30'', time zone: UTC1)
📕
|
IR Requirement Article 12 Other Requirements & Rules (…) 2. All measurement values shall be expressed using SI units or non-SI units accepted for use with the International System of Units, unless specified otherwise for a specific spatial data theme or type. |
📕
|
IR Requirement Annex II, Section 2.2 Grids Either of the grids with fixed and unambiguously defined locations defined in Sections 2.2.1 and 2.2.2 shall be used as a geo-referencing framework to make gridded data available in INSPIRE, unless one of the following conditions holds: (1) Other grids may be specified for specific spatial data themes in Annexes II-IV. In this case, data exchanged using such a theme-specific grid shall use standards in which the grid definition is either included with the data, or linked by reference. (2) For grid referencing in regions outside of continental Europe Member States may define their own grid based on a geodetic coordinate reference system compliant with ITRS and a Lambert Azimuthal Equal Area projection, following the same principles as laid down for the grid specified in Section 2.2.1. In this case, an identifier for the coordinate reference system shall be created. 2.2 Equal Area Grid The grid is based on the ETRS89 Lambert Azimuthal Equal Area (ETRS89-LAEA) coordinate reference system with the centre of the projection at the point 52o N, 10o E and false easting: x0 = 4321000 m, false northing: y0 = 3210000 m. The origin of the grid coincides with the false origin of the ETRS89-LAEA coordinate reference system (x=0, y=0). Grid points of grids based on ETRS89-LAEA shall coincide with grid points of the grid. The grid is hierarchical, with resolutions of 1m, 10m, 100m, 1000m, 10000m and 100000m. The grid orientation is south-north, west-east. The grid is designated as Grid_ETRS89-LAEA. For identification of an individual resolution level the cell size in metres is appended. For the unambiguous referencing and identification of a grid cell, the cell code composed of the size of the cell and the coordinates of the lower left cell corner in ETRS89-LAEA shall be used. The cell size shall be denoted in metres ("m") for cell sizes up to 100m or kilometres ("km") for cell sizes of 1000m and above. Values for northing and easting shall be divided by 10n, where n is the number of trailing zeros in the cell size value. |
===
Theme-specific requirements and recommendations
There are no theme-specific requirements or recommendations on reference systems and grids.
==
Data quality
This chapter includes a description of the data quality elements and sub-elements as well as the corresponding data quality measures that should be used to evaluate and document data quality for data sets related to the spatial data theme Soil (section 7.1).
It may also define requirements or recommendations about the targeted data quality results applicable for data sets related to the spatial data theme Soil (sections 7.2 and 957.3).
In particular, the data quality elements, sub-elements and measures specified in section 7.1 should be used for
evaluating and documenting data quality properties and constraints of spatial objects, where such properties or constraints are defined as part of the application schema(s) (see section 5);
evaluating and documenting data quality metadata elements of spatial data sets (see section 8); and/or
specifying requirements or recommendations about the targeted data quality results applicable for data sets related to the spatial data theme Soil (see sections 7.2 and 7.3).
The descriptions of the elements and measures are based on Annex D of ISO/DIS 19157 Geographic information – Data quality.
Table 3 lists all data quality elements and sub-elements that are being used in this specification. Data quality information can be evaluated at level of spatial object, spatial object type, dataset or dataset series. The level at which the evaluation is performed is given in the "Evaluation Scope" column.
The measures to be used for each of the listed data quality sub-elements are defined in the following sub-sections.
Table 3 – Data quality elements used in the spatial data theme Soil
Section | Data quality element | Data quality sub-element | Definition | Evaluation Scope |
---|---|---|---|---|
7.1.1 |
Logical consistency |
Conceptual consistency |
adherence to rules of the conceptual schema |
spatial object type; spatial object |
7.1.2 |
Logical consistency |
Domain consistency |
adherence of values to the value domains |
spatial object type; spatial object |
7.1.3 |
Completeness |
Omission |
data absent from the dataset, as described by the scope |
spatial object type; spatial object |
📘
|
Recomendation 7 Where it is impossible to express the evaluation of a data quality element in a quantitative way, the evaluation of the element should be expressed with a textual statement as a data quality descriptive result. |
The Application Schema conformance class of the Abstract Test Suite in Annex I defines a number of tests to evaluate the conceptual consistency (tests A.1.1-A.1.11) of a data set. The tests of the IR Theme-specific Requirements related to risk zones are also included (A.1.4-A.1.7.)
📘
|
Recomendation 8 For the tests on conceptual consistency, it is recommended to use the Logical consistency – Conceptual consistency data quality sub-element and the measure Number of items not compliant with the rules of the conceptual schema as specified in the table below. |
Name |
|
Alternative name |
- |
Data quality element |
logical consistency |
Data quality sub-element |
conceptual consistency |
Data quality basic measure |
error count |
Definition |
count of all items in the dataset that are not compliant with the rules of the conceptual schema |
Description |
If the conceptual schema explicitly or implicitly describes rules, these rules shall be followed. Violations against such rules can be, for example, invalid placement of features within a defined tolerance, duplication of features and invalid overlap of features. |
Evaluation scope |
spatial object / spatial object type |
Reporting scope |
data set |
Parameter |
- |
Data quality value type |
integer |
Data quality value structure |
- |
Source reference |
ISO/DIS 19157 Geographic information – Data quality |
Example |
|
Measure identifier |
10 |
The Application Schema conformance class of the Abstract Test Suite in Annex I defines a number of tests to evaluate the domain consistency (tests A1.10-A.1.12) of a data set.
📘
|
Recomendation 9 For the tests on domain consistency, it is recommended to use the Logical consistency – Domain consistency data quality sub-element and the measure Number of items not in conformance with their value domain as specified in the table below. |
Name |
Number of items not in conformance with their value domain |
Alternative name |
- |
Data quality element |
logical consistency |
Data quality sub-element |
domain consistency |
Data quality basic measure |
error count |
Definition |
count of all items in the dataset that are not in conformance with their value domain |
Description |
|
Evaluation scope |
spatial object / spatial object type |
Reporting scope |
data set |
Parameter |
- |
Data quality value type |
integer |
📘
|
Recomendation 10 Omission should be evaluated and documented using rate of missing items as specified in the tables below. |
Name | Rate of missing items |
---|---|
Alternative name |
- |
Data quality element |
Completeness |
Data quality sub-element |
Omission |
Data quality basic measure |
Error rate |
Definition |
Number of missing items in the dataset in relation to the number of items that should have been present |
Description |
|
Evaluation scope |
spatial object: Soil profile, parameters WRBSoilName, FAOHorizonNotation of soil horizons assigned to the soil profile |
Reporting scope |
data set data set series |
Parameter |
- |
Data quality value type |
Real (percentage) |
Data quality value structure |
Single value |
Source reference |
ISO/DIS 19157 Geographic information – Data quality |
Example |
The data set contains 23 observed soil profiles. For 22 of them, a WRB name is provided. So the value for the rate of missing items is 1/23 multiplied by 100 percent, i.e. 4.35 %. |
Measure identifier |
7 (ISO/DIS 19157:2012) |
===
Minimum data quality requirements
No minimum data quality requirements are defined for the spatial data theme Soil.
No minimum data quality recommendations are defined for the spatial data theme Soil.
==
Dataset-level metadata
This section specifies dataset-level metadata elements, which should be used for documenting metadata for a complete dataset or dataset series.
NOTE Metadata can also be reported for each individual spatial object (spatial object-level metadata). Spatial object-level metadata is fully described in the application schema(s) (section 5).
For some dataset-level metadata elements, in particular those for reporting data quality and maintenance, a more specific scope can be specified. This allows the definition of metadata at sub-dataset level, e.g. separately for each spatial object type (see instructions for the relevant metadata element).
Table 4 gives an overview of the metadata elements specified in Regulation 1205/2008/EC (implementing Directive 2007/2/EC of the European Parliament and of the Council as regards metadata).
The table contains the following information:
-
The first column provides a reference to the relevant section in the Metadata Regulation, which contains a more detailed description.
-
The second column specifies the name of the metadata element.
-
The third column specifies the multiplicity.
-
The fourth column specifies the condition, under which the given element becomes mandatory.
Table 4 – Metadata for spatial datasets and spatial dataset series specified in Regulation 1205/2008/EC
Metadata Regulation Section | Metadata element | Multiplicity | Condition |
---|---|---|---|
1.1 |
Resource title |
1 |
|
1.2 |
Resource abstract |
1 |
|
1.3 |
Resource type |
1 |
|
1.4 |
Resource locator |
0..* |
Mandatory if a URL is available to obtain more information on the resource, and/or access related services. |
1.5 |
Unique resource identifier |
1..* |
|
1.7 |
Resource language |
0..* |
Mandatory if the resource includes textual information. |
2.1 |
Topic category |
1..* |
|
3 |
Keyword |
1..* |
|
4.1 |
Geographic bounding box |
1..* |
|
5 |
Temporal reference |
1..* |
|
6.1 |
Lineage |
1 |
|
6.2 |
Spatial resolution |
0..* |
Mandatory for data sets and data set series if an equivalent scale or a resolution distance can be specified. |
7 |
Conformity |
1..* |
|
8.1 |
Conditions for access and use |
1..* |
|
8.2 |
Limitations on public access |
1..* |
|
9 |
Responsible organisation |
1..* |
|
10.1 |
Metadata point of contact |
1..* |
|
10.2 |
Metadata date |
1 |
|
10.3 |
Metadata language |
1 |
Generic guidelines for implementing these elements using ISO 19115 and 19119 are available at http://inspire.jrc.ec.europa.eu/index.cfm/pageid/101. The following sections describe additional theme-specific recommendations and requirements for implementing these elements.
The Conformity metadata element defined in Regulation 1205/2008/EC requires to report the conformance with the Implementing Rule for interoperability of spatial data sets and services. In addition, it may be used also to document the conformance to another specification.
📘
|
Recomendation 11 Dataset metadata should include a statement on the overall conformance of the dataset with this data specification (i.e. conformance with all requirements). |
📘
|
Recomendation 12 The Conformity metadata element should be used to document conformance with this data specification (as a whole), with a specific conformance class defined in the Abstract Test Suite in Annex A and/or with another specification. |
The Conformity element includes two sub-elements, the Specification (a citation of the Implementing Rule for interoperability of spatial data sets and services or other specification), and the Degree of conformity. The Degree can be Conformant (if the dataset is fully conformant with the cited specification), Not Conformant (if the dataset does not conform to the cited specification) or Not Evaluated (if the conformance has not been evaluated).
📘
|
Recomendation 13 If a dataset is not yet conformant with all requirements of this data specification, it is recommended to include information on the conformance with the individual conformance classes specified in the Abstract Test Suite in Annex A. |
📘
|
Recomendation 14 If a dataset is produced or transformed according to an external specification that includes specific quality assurance procedures, the conformity with this specification should be documented using the Conformity metadata element. |
📘
|
Recomendation 15 If minimum data quality recommendations are defined then the statement on the conformity with these requirements should be included using the Conformity metadata element and referring to the relevant data quality conformance class in the Abstract Test Suite. |
NOTE Currently no minimum data quality requirements are included in the IRs. The recommendation above should be included as a requirement in the IRs if minimum data quality requirements are defined at some point in the future.
📘
|
Recomendation 16 When documenting conformance with this data specification or one of the conformance classes defined in the Abstract Test Suite, the Specification sub-element should be given using the http URI identifier of the conformance class or using a citation including the following elements:
|
EXAMPLE 1: The XML snippets below show how to fill the Specification sub-element for documenting conformance with the whole data specification on Addresses v3.0.1.
<gmd:DQ_ConformanceResult>
<gmd:specification href="http://inspire.ec.europa.eu/conformanceClass/ad/3.0.1/tg" />
<gmd:explanation(…) </gmd:explanation>
<gmd:pass(…) </gmd:pass>
</gmd:DQ_ConformanceResult>
or (using a citation):
<gmd:DQ_ConformanceResult>
<gmd:specification>
<gmd:CI_Citation>
<gmd:title>
<gco:CharacterString>INSPIRE Data Specification on Soil – Draft Guidelines</gco:CharacterString>
</gmd:title>
<gmd:date>
<gmd:date>
<gco:Date>2013-01-24</gco:Date>
</gmd:date>
<gmd:dateType>
<gmd:CI_DateTypeCode codeList="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resou
rces/Codelist/ML_gmxCodelists.xml#CI_DateTypeCode" codeListValue="publication">publication</gmd:CI_DateTypeCode>
</gmd:dateType>
</gmd:date>
</gmd:CI_Citation>
</gmd:specification>
<gmd:explanation(…) </gmd:explanation>
<gmd:pass(…) </gmd:pass>
</gmd:DQ_ConformanceResult>
EXAMPLE 2: The XML snippets below show how to fill the Specification sub-element for documenting conformance with the CRS conformance class of the data specification on Addresses v3.0.1.
<gmd:DQ_ConformanceResult>
<gmd:specification href="http://inspire.ec.europa.eu/conformanceClass/ad/3.0.1/crs" />
<gmd:explanation(…) </gmd:explanation>
<gmd:pass(…) </gmd:pass>
</gmd:DQ_ConformanceResult>
or (using a citation):
<gmd:DQ_ConformanceResult>
<gmd:specification>
<gmd:CI_Citation>
<gmd:title>
<gco:CharacterString>INSPIRE Data Specification on Soil – Draft Guidelines – CRS</gco:CharacterString>
</gmd:title>
<gmd:date>
<gmd:date>
<gco:Date>2013-01-24</gco:Date>
</gmd:date>
<gmd:dateType>
<gmd:CI_DateTypeCode codeList="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resou
rces/Codelist/ML_gmxCodelists.xml#CI_DateTypeCode" codeListValue="publication">publication</gmd:CI_DateTypeCode>
</gmd:dateType>
</gmd:date>
</gmd:CI_Citation>
</gmd:specification>
<gmd:explanation(…) </gmd:explanation>
<gmd:pass(…) </gmd:pass>
</gmd:DQ_ConformanceResult>
📘
|
Recomendation 17 Following the ISO/DIS 19157 Quality principles, if a data provider has a procedure for the quality management of their spatial data sets then the appropriate data quality elements and measures defined in ISO/DIS 19157 should be used to evaluate and report (in the metadata) the results. If not, the Lineage metadata element (defined in Regulation 1205/2008/EC) should be used to describe the overall quality of a spatial data set. |
According to Regulation 1205/2008/EC, lineage "is a statement on process history and/or overall quality of the spatial data set. Where appropriate it may include a statement whether the data set has been validated or quality assured, whether it is the official version (if multiple versions exist), and whether it has legal validity. The value domain of this metadata element is free text".
The Metadata Technical Guidelines based on EN ISO 19115 and EN ISO 19119 specifies that the statement sub-element of LI_Lineage (EN ISO 19115) should be used to implement the lineage metadata element.
📘
|
Recomendation 18 To describe the transformation steps and related source data, it is recommended to use the following sub-elements of LI_Lineage: |
-
For the description of the transformation process of the local to the common INSPIRE data structures, the LI_ProcessStep sub-element should be used.
-
For the description of the source data the LI_Source sub-element should be used.
NOTE 1 In order to improve the interoperability, domain templates and instructions for using these free text elements (descriptive statements) may be specified here and/or in an Annex of this data specification.
The Lineage metadata field should be used to
-
state which source data have been used to produce the current dataset;
-
resulting limitations to the use of the dataset, e.g. regarding scale, and
-
describe known errors or shortcomings of the dataset.
If data on soil or other kinds of classification are included in the dataset, the classification systems should be stated or described as well.
According to Regulation 1205/2008/EC, at least one of the following temporal reference metadata sub-elements shall be provided: temporal extent, date of publication, date of last revision, date of creation.
📘
|
Recomendation 19 It is recommended that at least the date of the last revision of a spatial data set should be reported using the Date of last revision metadata sub-element. |
===
Metadata elements for interoperability
📕
|
IR Requirement Article 13 Metadata required for Interoperability The metadata describing a spatial data set shall include the following metadata elements required for interoperability: 1. Coordinate Reference System: Description of the coordinate reference system(s) used in the data set. 2. Temporal Reference System: Description of the temporal reference system(s) used in the data set. This element is mandatory only if the spatial data set contains temporal information that does not refer to the default temporal reference system. 3. Encoding: Description of the computer language construct(s) specifying the representation of data objects in a record, file, message, storage device or transmission channel. 4. Topological Consistency: Correctness of the explicitly encoded topological characteristics of the data set as described by the scope. This element is mandatory only if the data set includes types from the Generic Network Model and does not assure centreline topology (connectivity of centrelines) for the network. 5. Character Encoding: The character encoding used in the data set. This element is mandatory only if an encoding is used that is not based on UTF-8. 6. Spatial Representation Type: The method used to spatially represent geographic information. |
These Technical Guidelines propose to implement the required metadata elements based on ISO 19115 and ISO/TS 19139.
The following TG requirements need to be met in order to be conformant with the proposed encoding.
📒
|
TG Requirement 3 Metadata instance (XML) documents shall validate without error against the used ISO 19139 XML schema. |
NOTE Section 2.1.2 of the Metadata Technical Guidelines discusses the different ISO 19139 XML schemas that are currently available.
📒
|
TG Requirement 4 Metadata instance (XML) documents shall contain the elements and meet the INSPIRE multiplicity specified in the sections below. |
📒
|
TG Requirement 5 The elements specified below shall be available in the specified ISO/TS 19139 path. |
📘
|
Recomendation 20 The metadata elements for interoperability should be made available together with the metadata elements defined in the Metadata Regulation through an INSPIRE discovery service. |
NOTE While this not explicitly required by any of the INSPIRE Implementing Rules, making all metadata of a data set available together and through one service simplifies implementation and usability.
Metadata element name | Coordinate Reference System |
---|---|
Definition |
Description of the coordinate reference system used in the dataset. |
ISO 19115 number and name |
13. referenceSystemInfo |
ISO/TS 19139 path |
referenceSystemInfo |
INSPIRE obligation / condition |
mandatory |
INSPIRE multiplicity |
1..* |
Data type(and ISO 19115 no.) |
186. MD_ReferenceSystem |
Domain |
To identify the reference system, the referenceSystemIdentifier (RS_Identifier) shall be provided. NOTE More specific instructions, in particular on pre-defined values for filling the referenceSystemIdentifier attribute should be agreed among Member States during the implementation phase to support interoperability. |
Implementing instructions |
|
Example |
referenceSystemIdentifier: code: ETRS_89 codeSpace: INSPIRE RS registry |
Example XML encoding |
<gmd:referenceSystemInfo> <gmd:MD_ReferenceSystem> <gmd:referenceSystemIdentifier> <gmd:RS_Identifier> <gmd:code> <gco:CharacterString>ETRS89 </gco:CharacterString> </gmd:code> <gmd:codeSpace> <gco:CharacterString>INSPIRE RS registry</gco:CharacterString> </gmd:codeSpace> </gmd:RS_Identifier> </gmd:referenceSystemIdentifier> </gmd:MD_ReferenceSystem> </gmd:referenceSystemInfo> |
Comments |
Metadata element name | Temporal Reference System |
---|---|
Definition |
Description of the temporal reference systems used in the dataset. |
ISO 19115 number and name |
13. referenceSystemInfo |
ISO/TS 19139 path |
referenceSystemInfo |
INSPIRE obligation / condition |
Mandatory, if the spatial data set or one of its feature types contains temporal information that does not refer to the Gregorian Calendar or the Coordinated Universal Time. |
INSPIRE multiplicity |
0..* |
Data type(and ISO 19115 no.) |
186. MD_ReferenceSystem |
Domain |
No specific type is defined in ISO 19115 for temporal reference systems. Thus, the generic MD_ReferenceSystem element and its reference SystemIdentifier (RS_Identifier) property shall be provided. NOTE More specific instructions, in particular on pre-defined values for filling the referenceSystemIdentifier attribute should be agreed among Member States during the implementation phase to support interoperability. |
Implementing instructions |
|
Example |
referenceSystemIdentifier: code: GregorianCalendar codeSpace: INSPIRE RS registry |
Example XML encoding |
<gmd:referenceSystemInfo> <gmd:MD_ReferenceSystem> <gmd:referenceSystemIdentifier> <gmd:RS_Identifier> <gmd:code> <gco:CharacterString>GregorianCalendar </gco:CharacterString> </gmd:code> <gmd:codeSpace> <gco:CharacterString>INSPIRE RS registry</gco:CharacterString> </gmd:codeSpace> </gmd:RS_Identifier> </gmd:referenceSystemIdentifier> </gmd:MD_ReferenceSystem> </gmd:referenceSystemInfo> |
Comments |
Metadata element name | Encoding |
---|---|
Definition |
Description of the computer language construct that specifies the representation of data objects in a record, file, message, storage device or transmission channel |
ISO 19115 number and name |
271. distributionFormat |
ISO/TS 19139 path |
distributionInfo/MD_Distribution/distributionFormat |
INSPIRE obligation / condition |
mandatory |
INSPIRE multiplicity |
1..* |
Data type (and ISO 19115 no.) |
284. MD_Format |
Domain |
See B.2.10.4. The property values (name, version, specification) specified in section 5 shall be used to document the default and alternative encodings. |
Implementing instructions |
|
Example |
name: <Application schema nameGML application schema version: version 3.0 specification: D2.8.III.3 Data Specification on Soil – Technical Guidelines |
Example XML encoding |
<gmd:MD_Format> <gmd:name> <gco:CharacterString>SomeApplicationSchema GML application schema</gco:CharacterString> </gmd:name> <gmd:version> <gco:CharacterString>3.0</gco:CharacterString> </gmd:version> <gmd:specification> <gco:CharacterString>D2.8.III.3 Data Specification on Soil – Technical Guidelines</gco:CharacterString> </gmd:specification> </gmd:MD_Format> |
Comments |
Metadata element name | Character Encoding |
---|---|
Definition |
The character encoding used in the data set. |
ISO 19115 number and name |
|
ISO/TS 19139 path |
|
INSPIRE obligation / condition |
Mandatory, if an encoding is used that is not based on UTF-8. |
INSPIRE multiplicity |
0..* |
Data type (and ISO 19115 no.) |
|
Domain |
|
Implementing instructions |
|
Example |
- |
Example XML encoding |
<gmd:characterSet> <gmd:MD_CharacterSetCode codeListValue="8859part2" codeList="http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/Codelist/ML_gmxCodelists.xml#CharacterSetCode">8859-2</gmd:MD_CharacterSetCode> </gmd:characterSet> |
Comments |
Metadata element name | Spatial representation type |
---|---|
Definition |
The method used to spatially represent geographic information. |
ISO 19115 number and name |
37. spatialRepresentationType |
ISO/TS 19139 path |
|
INSPIRE obligation / condition |
Mandatory |
INSPIRE multiplicity |
1..* |
Data type (and ISO 19115 no.) |
B.5.26 MD_SpatialRepresentationTypeCode |
Domain |
|
Implementing instructions |
Of the values included in the code list in ISO 19115 (vector, grid, textTable, tin, stereoModel, video), only vector, grid and tin should be used. NOTE Additional code list values may be defined based on feedback from implementation. |
Example |
- |
Example XML encoding |
|
Comments |
See section 8.3.2 for instructions on how to implement metadata elements for reporting data quality.
===
===
Recommended theme-specific metadata elements
📘
|
Recomendation 21 The metadata describing a spatial data set or a spatial data set series related to the theme Soil should comprise the theme-specific metadata elements specified in Table 5. |
The table contains the following information:
-
The first column provides a reference to a more detailed description.
-
The second column specifies the name of the metadata element.
-
The third column specifies the multiplicity.
Table 5 – Optional theme-specific metadata elements for the theme Soil
Section | Metadata element | Multiplicity |
---|---|---|
8.3.1 |
Maintenance Information |
0..1 |
8.3.2 |
Logical Consistency – Conceptual Consistency |
0..* |
8.3.2 |
Logical Consistency – Domain Consistency |
0..* |
8.3.2 |
Commission – Ommission |
0..* |
📘
|
Recomendation 22 For implementing the metadata elements included in this section using ISO 19115, ISO/DIS 19157 and ISO/TS 19139, the instructions included in the relevant sub-sections should be followed. |
Metadata element name | Maintenance information |
---|---|
Definition |
Information about the scope and frequency of updating |
ISO 19115 number and name |
30. resourceMaintenance |
ISO/TS 19139 path |
identificationInfo/MD_Identification/resourceMaintenance |
INSPIRE obligation / condition |
optional |
INSPIRE multiplicity |
0..1 |
Data type(and ISO 19115 no.) |
142. MD_MaintenanceInformation |
Domain |
This is a complex type (lines 143-148 from ISO 19115). At least the following elements should be used (the multiplicity according to ISO 19115 is shown in parentheses): maintenanceAndUpdateFrequency [1]: frequency with which changes and additions are made to the resource after the initial resource is completed / domain value: MD_MaintenanceFrequencyCode: updateScope [0..*]: scope of data to which maintenance is applied / domain value: MD_ScopeCode maintenanceNote [0..*]: information regarding specific requirements for maintaining the resource / domain value: free text |
Implementing instructions |
|
Example |
|
Example XML encoding |
|
Comments |
📘
|
Recomendation 23 For reporting the results of the data quality evaluation, the data quality elements, sub-elements and (for quantitative evaluation) measures defined in chapter 7 should be used. |
📘
|
Recomendation 24 The metadata elements specified in the following sections should be used to report the results of the data quality evaluation. At least the information included in the row "Implementation instructions" should be provided. |
The first section applies to reporting quantitative results (using the element DQ_QuantitativeResult), while the second section applies to reporting non-quantitative results (using the element DQ_DescriptiveResult).
📘
|
Recomendation 25 If a dataset does not pass the tests of the Application schema conformance class (defined in Annex A), the results of each test should be reported using one of the options described in sections 8.3.2.1 and 8.3.2.2. |
NOTE 1 If using non-quantitative description, the results of several tests do not have to be reported separately, but may be combined into one descriptive statement.
NOTE 2 The sections 8.3.2.1 and 8.3.2.2 may need to be updated once the XML schemas for ISO 19157 have been finalised.
The scope for reporting may be different from the scope for evaluating data quality (see section 7). If data quality is reported at the data set or spatial object type level, the results are usually derived or aggregated.
📘
|
Recomendation 26 The scope element (of type DQ_Scope) of the DQ_DataQuality subtype should be used to encode the reporting scope. Only the following values should be used for the level element of DQ_Scope: Series, Dataset, featureType. If the level is featureType the levelDescription/MDScopeDescription/features element (of type Set< GF_FeatureType>) shall be used to list the feature type names. |
NOTE In the level element of DQ_Scope, the value featureType is used to denote spatial object type.
Metadata element name | See chapter 7 |
---|---|
Definition |
See chapter 7 |
ISO/DIS 19157 number and name |
3. report |
ISO/TS 19139 path |
dataQualityInfo/*/report |
INSPIRE obligation / condition |
optional |
INSPIRE multiplicity |
0..* |
Data type (and ISO/DIS 19157 no.) |
Corresponding DQ_xxx subelement from ISO/DIS 19157, e.g. 12. DQ_CompletenessCommission |
Domain |
Lines 7-9 from ISO/DIS 19157 7. DQ_MeasureReference (C.2.1.3) 8. DQ_EvaluationMethod (C.2.1.4.) 9. DQ_Result (C2.1.5.) |
Implementing instructions |
39. nameOfMeasure NOTE This should be the name as defined in Chapter 7. 42. evaluationMethodType 43. evaluationMethodDescription NOTE If the reported data quality results are derived or aggregated (i.e. the scope levels for evaluation and reporting are different), the derivation or aggregation should also be specified using this property. 46. dateTime NOTE This should be data or range of dates on which the data quality measure was applied. 63. DQ_QuantitativeResult / 64. value NOTE The DQ_Result type should be DQ_QuantitativeResult and the value(s) represent(s) the application of the data quality measure (39.) using the specified evaluation method (42-43.) |
Example |
See Table E.12 — Reporting commission as metadata (ISO/DIS 19157) |
Example XML encoding |
Metadata element name | See chapter 7 |
---|---|
Definition |
See chapter 7 |
ISO/DIS 19157 number and name |
3. report |
ISO/TS 19139 path |
dataQualityInfo/*/report |
INSPIRE obligation / condition |
optional |
INSPIRE multiplicity |
0..* |
Data type (and ISO/DIS 19157 no.) |
Corresponding DQ_xxx subelement from ISO/DIS 19157, e.g. 12. DQ_CompletenessCommission |
Domain |
Line 9 from ISO/DIS 19157 9. DQ_Result (C2.1.5.) |
Implementing instructions |
67. DQ_DescripitveResult / 68. statement NOTE The DQ_Result type should be DQ_DescriptiveResult and in the statement (68.) the evaluation of the selected DQ sub-element should be expressed in a narrative way. |
Example |
See Table E.15 — Reporting descriptive result as metadata (ISO/DIS 19157) |
Example XML encoding |
📕
|
IR Requirement Article 8 Updates 1. Member States shall make available updates of data on a regular basis. 2. All updates shall be made available at the latest 6 months after the change was applied in the source data set, unless a different period is specified for a specific spatial data theme in Annex II. |
NOTE In this data specification, no exception is specified, so all updates shall be made available at the latest 6 months after the change was applied in the source data set.
According to Article 11(1) of the INSPIRE Directive, Member States shall establish and operate a network of services for INSPIRE spatial data sets and services. The relevant network service types for making spatial data available are:
-
view services making it possible, as a minimum, to display, navigate, zoom in/out, pan, or overlay viewable spatial data sets and to display legend information and any relevant content of metadata;
-
download services, enabling copies of spatial data sets, or parts of such sets, to be downloaded and, where practicable, accessed directly;
-
transformation services, enabling spatial data sets to be transformed with a view to achieving interoperability.
NOTE For the relevant requirements and recommendations for network services, see the relevant Implementing Rules and Technical Guidelines[16].
EXAMPLE 1 Through the Get Spatial Objects function, a download service can either download a pre-defined data set or pre-defined part of a data set (non-direct access download service), or give direct access to the spatial objects contained in the data set, and download selections of spatial objects based upon a query (direct access download service). To execute such a request, some of the following information might be required:
-
the list of spatial object types and/or predefined data sets that are offered by the download service (to be provided through the Get Download Service Metadata operation),
-
and the query capabilities section advertising the types of predicates that may be used to form a query expression (to be provided through the Get Download Service Metadata operation, where applicable),
-
a description of spatial object types offered by a download service instance (to be provided through the Describe Spatial Object Types operation).
EXAMPLE 2 Through the Transform function, a transformation service carries out data content transformations from native data forms to the INSPIRE-compliant form and vice versa. If this operation is directly called by an application to transform source data (e.g. obtained through a download service) that is not yet conformant with this data specification, the following parameters are required:
Input data (mandatory). The data set to be transformed.
-
Source model (mandatory, if cannot be determined from the input data). The model in which the input data is provided.
-
Target model (mandatory). The model in which the results are expected.
-
Model mapping (mandatory, unless a default exists). Detailed description of how the transformation is to be carried out.
The IRs contain the following two requirements for the encoding to be used to make data available.
📕
|
IR Requirement Article 7 Encoding 1. Every encoding rule used to encode spatial data shall conform to EN ISO 19118. In particular, it shall specify schema conversion rules for all spatial object types and all attributes and association roles and the output data structure used. 2. Every encoding rule used to encode spatial data shall be made available. |
NOTE ISO 19118:2011 specifies the requirements for defining encoding rules used for interchange of geographic data within the set of International Standards known as the "ISO 19100 series". An encoding rule allows geographic information defined by application schemas and standardized schemas to be coded into a system-independent data structure suitable for transport and storage. The encoding rule specifies the types of data being coded and the syntax, structure and coding schemes used in the resulting data structure. Specifically, ISO 19118:2011 includes
-
requirements for creating encoding rules based on UML schemas,
-
requirements for creating encoding services, and
-
requirements for XML-based encoding rules for neutral interchange of data.
While the IRs do not oblige the usage of a specific encoding, these Technical Guidelines propose to make data related to the spatial data theme Soil available at least in the default encoding(s) specified in section 0. In this section, a number of TG requirements are listed that need to be met in order to be conformant with the default encoding(s).
The proposed default encoding(s) meet the requirements in Article 7 of the IRs, i.e. they are conformant with ISO 19118 and (since they are included in this specification) publicly available.
This data specification proposes the use of GML as the default encoding, as recommended in sections 7.2 and 7.3 of [DS-D2.7]. GML is an XML encoding in compliance with ISO 19118, as required in Article 7(1). For details, see [ISO 19136], and in particular Annex E (UML-to-GML application schema encoding rules).
The following TG requirements need to be met in order to be conformant with GML encodings.
📒
|
TG Requirement 6 Data instance (XML) documents shall validate without error against the provided XML schema. |
NOTE 1 Not all constraints defined in the application schemas can be mapped to XML. Therefore, the following requirement is necessary.
NOTE 2 The obligation to use only the allowed code list values specified for attributes and most of the constraints defined in the application schemas cannot be mapped to the XML sch. They can therefore not be enforced through schema validation. It may be possible to express some of these constraints using other schema or rule languages (e.g. Schematron), in order to enable automatic validation.
Name: Soil GML Application Schema
Version: version 3.0,
Specification: D2.8.III.3 Data Specification on Soil – Technical Guidelines
Character set: UTF-8
The xml schema document is available from http://inspire.ec.europa.eu/schemas/so/3.0/Soil.xsd
📘
|
Recomendation 27 It is recommended that also the encodings specified in this section be provided for the relevant application schemas. |
NOTE In the Annex D the TWG has prepared the SoilContamination data model extension that includes the feature catalogue. It is recommended as a starting point for further development.
For coverages, different encodings may be used for the domain and the range of the coverage. There are several options for packaging the domain and range encoding when delivering coverage data through a download service, as discussed below[17].].
Multipart representation
For performance reasons, binary file formats are usually preferred to text-based formats such as XML for storing large amounts of coverage data. However, they cannot directly constitute an alternative to pure GML, since their own data structure might often not support all the ISO 19123 elements used to describe coverages in the conceptual model.
The OGC standard GML Application Schema for coverages [OGC 09-146r2] offers a format encoding which combines these two approaches. The first part consists of a GML document representing all coverage components except the range set, which is contained in the second part in some other encoding format such as 'well known' binary formats'. Some information in the second part may be redundant with the GML content of the first part. In this case, consistency must be necessarily ensured, for example by defining a GML mapping of the additional encoding format.
The advantage of this multipart representation is that coverage constituents are not handled individually but as a whole. This is not really the case with GML which also allows the encoding of the value side of the coverage in external binary files, but via references to remote locations.
📒
|
TG Requirement 7 Coverage data encoded as multipart messages shall comply with the multipart representation conformance class defined in GML Application Schema for Coverages [OGC 09-146r2]. |
NOTE The GML Application Schema for Coverages establishes a one-to-one relationship between coverages and multipart document instances.
Reference to an external file
The range set can be encoded within the XML structure as an external binary file using the gml:File element. This has the benefit of efficiently storing the range set data within an external file that is of a well-known format type, for example TIFF or GeoTIFF. This method of encoding is of most use for the storage of large files.
Encoding the range inline
This option encodes the range set data within the XML inline. This is encoded as a DataBlock element. This encoding provides much greater visibility for the range set values, however, this comes at the cost of reduced efficiency. This method of encoding would therefore only be suitable for small datasets.
Encoding the domain inside a JPEG 2000 file
This option consists in packaging all the components of one or several coverages, including the domain expressed in GML, in a single JPEG 2000 file. It is based on the OGC standard GML in JPEG 2000 for Geographic Imagery [OGC 05-047r2], also known as GMLJP2, which specifies how to use GML within the XML boxes of JPEG 2000 files.
📒
|
TG Requirement 8 Coverage data encoded in standalone JPEG 2000 files shall comply with the OGC standard GML in JPEG 2000 for Geographic Imagery [OGC 05-047r2]. |
TG Requirement 8 implies that all the encoding rules presented in GMLJP2 shall be strictly followed for including GML within JPEG 2000 data files correctly. For the sake of harmonization, the encoding rules adopted for the multipart message encoding should also apply to the GMLJP2 encoding.
6.4.1. The encoding of coverage components in GMLJP2 within a JPEG 2000 file should conform to the rules specified in the Guidelines for the encoding of spatial data [DS-D2.7].optional encoding for the coverage part of the application schema Soil
For Soil Theme and associated Soil Theme Descriptive sspatial object types that provide the possibility to exchange soil thematic maps information as coverages the following encodings are recommended:
📘
|
Recomendation 1 The recommended coverage encodings for SoilThemeCoverage, SoilThemeDescribtedCoverage spatial object types are: GeoTIFF and JPEG2000. |
The encoding of coverage components in GMLJP2 within a JPEG 2000 file should conform to the rules specified in the Guidelines for the encoding of spatial data [DS-D2.7]
==
Data Capture
There is no specific guidance required with respect to data capture.
==
Portrayal
This clause defines the rules for layers and styles to be used for portrayal of the spatial object types defined for this theme. Portrayal is regulated in Article 14 of the IRs.
📕
|
IR Requirement Article 14 Portrayal 1. For the portrayal of spatial data sets using a view network service as specified in Commission Regulation No 976/2009 ([18]), the following shall be available: (a) the layers specified in Annex II for the theme or themes the data set is related to; (b) for each layer at least a default portrayal style, with as a minimum an associated title and a unique identifier. 2. For each layer, Annex II defines the following: (a) a human readable title of the layer to be used for display in user interface; (b) the spatial object type(s), or sub-set thereof, that constitute(s) the content of the layer. |
In section 11.1, the types of layers are defined that are to be used for the portrayal of the spatial object types defined in this specification. A view service may offer several layers of the same type, one for each dataset that it offers data on a specific topic.
NOTE The layer specification in the IRs only contains the name, a human readable title and the (subset(s) of) spatial object type(s), that constitute(s) the content of the layer. In addition, these Technical Guidelines suggest keywords for describing the layer.
📘
|
Recomendation 28 It is recommended to use the keywords specified in section 11.1 in the Layers Metadata parameters of the INSPIRE View service (see Annex III, Part A, section 2.2.4 in Commission Regulation (EC) No 976/2009). |
Section 11.2 specifies one style for each of these layers. It is proposed that INSPIRE view services support this style as the default style required by Article 14(1b).
📒
|
TG Requirement 9 For each layer specified in this section, the styles defined in section 11.2 shall be available. |
NOTE The default style should be used for portrayal by the view network service if no user-defined style is specified in a portrayal request for a specific layer.
In section 11.3, further styles can be specified that represent examples of styles typically used in a thematic domain. It is recommended that also these styles should be supported by INSPIRE view services, where applicable.
📘
|
Recomendation 29 In addition, it is recommended that, where applicable, INSPIRE view services also support the styles defined in section 11.3. |
Where XML fragments are used in the following sections, the following namespace prefixes apply:
-
sld="http://www.opengis.net/sld" (WMS/SLD 1.1)
-
se="http://www.opengis.net/se" (SE 1.1)
-
ogc="http://www.opengis.net/ogc" (FE 1.1)
Layer Name | Layer Title | Spatial object type(s) | Keywords |
---|---|---|---|
SO.SoilBody |
Soils |
SoilBody |
soil body |
SO.ObservedSoilProfile |
Observed Soil Profile |
ObservedSoilProfile, SoilPlot |
soil plot, soil plot location, bore hole, boring, bore hole location, soil profile, profile, soil profile location, trial pit, trial pit location, soil pit |
SO.SoilSite |
Soil Site |
SoilSite |
soil Site |
SO. <CodeListValue> where <CodeListValueis one entry from the codelist SoilDerivedObjectParameterNameValue Example: SO. organicCarbonContent |
<human readable name> Example: OrganicCarbonContent |
SoilDerivedObject (basePhenomenon: SoilDerivedObjectParameterNameValue) |
Soil theme, soil property |
SO.<CodeListValueCoverage where <CodeListValueis one entry from the codelist SoilDerivedObjectParameterNameValue Example: SO. organicCarbonContentCoverage |
<human readable name> Example: OrganicCarbonContent Coverage |
SoilThemeCoverage (soilThemeParameter/ soilThemeParameterName: SoilDerivedObjectParameterNameValue) |
Soil theme, soil property |
NOTE The table above contains several layers for the spatial object type(s) <spatial object type names>, which can be further classified using a code list-valued attribute. Such sets of layers are specified as described in Article 14(3) of the IRs.
📕
|
IR Requirement Article 14 Portrayal (…) 3. For spatial object types whose objects can be further classified using a code list-valued attribute, several layers may be defined. Each of these layers shall include the spatial objects corresponding to one specific code list value. In the definition of such sets of layers in Annexes II-IV, (a) the placeholder <CodeListValueshall represent the values of the relevant code list, with the first letter in upper case, (b) the placeholder <human-readable nameshall represent the human-readable name of the code list values; (c) the spatial object type shall include the relevant attribute and code list, in parentheses; (d) one example of a layer shall be given. |
Style Name | SO.SoilBody.Default |
---|---|
Default Style |
Yes |
Style Title |
Soil Body Default Style |
Style Abstract |
This style is for visualising the boundaries of soil bodies (polygon geometry) using a solid black outline with a stroke width of 1 pixel. Each polygon can be labelled with a value that links it unambiguously to its soilBodyLabel (e.g. the value of the soilBodyLabel itself); the label should be in black colour using a halo to be readable on dark solid fills and only appears at a certain level of detail centred on the polygon centroid with a size of 10 pt. The same label should appear in the legend with the soilBodyLabel text. This style can be used when overlaying this layer on light coloured backgrounds. |
Symbology |
|
Minimum & maximum scales |
No scale limits |
Style Name | SO.SoilObservedProfile.Default |
---|---|
Default Style |
Yes |
Style Title |
Observed Soil Profile Default Style |
Style Abstract |
This style is for visualising the location associated to instances of the ObservedSoilProfile object, provided that the soilPlotLocation attribute of the associated SoilPlot object is expressed in (X,Y) coordinates. Depending on the value of the attribute soilPlotType, the object is to be displayed differently: a solid red circle when the value is borehole, a solid blue circle when the value is trialPit, a solid green circle when the value is sample. |
Symbology |
|
Minimum & maximum scales |
No scale limits |
Style Name | SO.SoilSite.Default |
---|---|
Default Style |
Yes |
Style Title |
Soil Site Default Style |
Style Abstract |
This style is for visualising the boundaries of soil sites (polygon geometry) using a solid blue outline with a stroke width of 1 pixel. |
Symbology |
|
Minimum & maximum scales |
No scale limits |
Style Name | SO.SoilBody.WRB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Style Title |
Soil Body WRB style |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Style Abstract |
In the data specifications for SOIL, any instance of the SoilBody object 'is described by' one or more instances of the DerivedSoilProfile object. If the WRBSoilName attribute of these instances hold valid values (i.e. values of the type WRBSoilNameType), one could derive (through an algorithm) a WRB Reference Soil Group value to be associated with the instance of the SoilBody object. The style SO.SoilBody.WRB is for filling the polygons defined by the geometry attribute with a colour associated with the computed WRB Reference Soil Group. This SO.SoilBody.WRB style additionally outlines the polygons as defined in the SO.SoilBody.Default style. There is one colour defined for each of the 32 WRB Reference Soil Groups (RSG):
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Symbology |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Minimum & maximum scales |
No scale limits |
Style Name | SO.SoilBody.Alternative |
---|---|
Default Style |
Yes |
Style Title |
Soil Body Alternative Style |
Style Abstract |
This style is for visualising the boundaries of soil bodies (polygon geometry) using a solid yellow outline with a stroke width of 1 pixel. Each polygon can be labelled with a value that links it unambiguously to its soilBodyLabel (e.g. the value of the soilBodyLabel itself); the label should be in yellow colour using a halo to be readable on dark solid fills and only appears at a certain level of detail centred on the polygon centroid with a size of 10 pt. The same label should appear in the legend with the soilBodyLabel text. This style can be used when overlaying this layer on dark coloured backgrounds. |
Symbology |
|
Minimum & maximum scales |
No scale limits |