-
Notifications
You must be signed in to change notification settings - Fork 252
/
train_on_kubric.py
706 lines (631 loc) · 24 KB
/
train_on_kubric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import random
import torch
import signal
import socket
import sys
import json
import torch.nn.functional as F
import numpy as np
import argparse
import logging
from pathlib import Path
from tqdm import tqdm
import torch.optim as optim
from torch.cuda.amp import GradScaler
from pytorch_lightning.lite import LightningLite
from cotracker.models.core.cotracker.cotracker3_offline import CoTrackerThreeOffline
from cotracker.models.core.cotracker.cotracker3_online import CoTrackerThreeOnline
from cotracker.utils.visualizer import Visualizer
from cotracker.models.core.model_utils import get_uniformly_sampled_pts
from cotracker.evaluation.core.evaluator import Evaluator
from cotracker.datasets.utils import collate_fn, collate_fn_train, dataclass_to_cuda_
from cotracker.models.core.cotracker.losses import (
sequence_loss,
sequence_BCE_loss,
sequence_prob_loss,
)
from cotracker.utils.train_utils import (
Logger,
get_eval_dataloader,
get_train_dataset,
sig_handler,
term_handler,
run_test_eval,
)
def fetch_optimizer(args, model):
"""Create the optimizer and learning rate scheduler"""
mlp_params = sum(
p.numel()
for name, p in model.named_parameters()
if p.requires_grad and "corr_mlp" in name
)
print(f"Total number of MlP parameters: {mlp_params}")
mlp_params = sum(
p.numel()
for name, p in model.named_parameters()
if p.requires_grad and "cmdtop" in name
)
print(f"Total number of cmdtop parameters: {mlp_params}")
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total number of parameters: {total_params}")
optimizer = optim.AdamW(
model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=1e-8
)
scheduler = optim.lr_scheduler.OneCycleLR(
optimizer,
args.lr,
args.num_steps + 100,
pct_start=0.05,
cycle_momentum=False,
anneal_strategy="cos",
)
return optimizer, scheduler
def forward_batch(batch, model, args):
video = batch.video
trajs_g = batch.trajectory
vis_g = batch.visibility
valids = batch.valid
B, T, C, H, W = video.shape
assert C == 3
B, T, N, D = trajs_g.shape
device = video.device
__, first_positive_inds = torch.max(vis_g, dim=1)
if args.query_sampling_method == "random":
assert B == 1
true_indices = torch.nonzero(vis_g[0])
# Group the indices by the first column (N)
grouped_indices = true_indices[:, 1].unique()
# Initialize an empty tensor to hold the sampled points
sampled_points = torch.empty((B, N, D))
indices = torch.empty((B, N, 1))
# For each unique N
for n in grouped_indices:
# Get the T indices where visibilities[0, :, n] is True
t_indices = true_indices[true_indices[:, 1] == n, 0]
# Select a random index from t_indices
random_index = t_indices[torch.randint(0, len(t_indices), (1,))]
# Use this random index to sample a point from the trajectories tensor
sampled_points[0, n] = trajs_g[0, random_index, n]
indices[0, n] = random_index.float()
# model.window_len = vis_g.shape[1]
queries = torch.cat([indices, sampled_points], dim=2)
else:
# We want to make sure that during training the model sees visible points
# that it does not need to track just yet: they are visible but queried from a later frame
N_rand = N // 4
# inds of visible points in the 1st frame
nonzero_inds = [
[torch.nonzero(vis_g[b, :, i]) for i in range(N)] for b in range(B)
]
for b in range(B):
rand_vis_inds = torch.cat(
[
nonzero_row[torch.randint(len(nonzero_row), size=(1,))]
for nonzero_row in nonzero_inds[b]
],
dim=1,
)
first_positive_inds[b] = torch.cat(
[rand_vis_inds[:, :N_rand], first_positive_inds[b : b + 1, N_rand:]],
dim=1,
)
ind_array_ = torch.arange(T, device=device)
ind_array_ = ind_array_[None, :, None].repeat(B, 1, N)
assert torch.allclose(
vis_g[ind_array_ == first_positive_inds[:, None, :]],
torch.ones(1, device=device),
)
gather = torch.gather(
trajs_g, 1, first_positive_inds[:, :, None, None].repeat(1, 1, N, D)
)
xys = torch.diagonal(gather, dim1=1, dim2=2).permute(0, 2, 1)
queries = torch.cat([first_positive_inds[:, :, None], xys[:, :, :2]], dim=2)
assert B == 1
if (
torch.isnan(queries).any()
or torch.isnan(trajs_g).any()
or queries.abs().max() > 1500
):
print("failed_sample")
print("queries time", queries[..., 0])
print("queries ", queries[..., 1:])
queries = torch.ones_like(queries).to(queries.device).float()
print("new queries", queries)
valids = torch.zeros_like(valids).to(valids.device).float()
print("new valids", valids)
model_output = model(
video=video, queries=queries[..., :3], iters=args.train_iters, is_train=True
)
tracks, visibility, confidence, train_data = model_output
coord_predictions, vis_predictions, confidence_predicitons, valid_mask = train_data
vis_gts = []
invis_gts = []
traj_gts = []
valids_gts = []
if args.offline_model:
S = T
seq_len = (S // 2) + 1
else:
S = args.sliding_window_len
seq_len = T
for ind in range(0, seq_len - S // 2, S // 2):
vis_gts.append(vis_g[:, ind : ind + S])
invis_gts.append(1 - vis_g[:, ind : ind + S])
traj_gts.append(trajs_g[:, ind : ind + S, :, :2])
val = valids[:, ind : ind + S]
if not args.offline_model:
val = val * valid_mask[:, ind : ind + S]
valids_gts.append(val)
seq_loss_visible = sequence_loss(
coord_predictions,
traj_gts,
valids_gts,
vis=vis_gts,
gamma=0.8,
add_huber_loss=args.add_huber_loss,
loss_only_for_visible=True,
)
confidence_loss = sequence_prob_loss(
coord_predictions, confidence_predicitons, traj_gts, vis_gts
)
vis_loss = sequence_BCE_loss(vis_predictions, vis_gts)
output = {"flow": {"predictions": tracks[0].detach()}}
output["flow"]["loss"] = seq_loss_visible.mean() * 0.05
output["flow"]["queries"] = queries.clone()
if not args.train_only_on_visible:
seq_loss_invisible = sequence_loss(
coord_predictions,
traj_gts,
valids_gts,
vis=invis_gts,
gamma=0.8,
add_huber_loss=False,
loss_only_for_visible=True,
)
output["flow_invisible"] = {"loss": seq_loss_invisible.mean() * 0.01}
output["visibility"] = {
"loss": vis_loss.mean(),
"predictions": visibility[0].detach(),
}
output["confidence"] = {
"loss": confidence_loss.mean(),
}
return output
class Lite(LightningLite):
def run(self, args):
def seed_everything(seed: int):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
seed_everything(42)
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed + worker_id)
random.seed(worker_seed + worker_id)
g = torch.Generator()
g.manual_seed(42)
if self.global_rank == 0:
eval_dataloaders = []
for ds_name in args.eval_datasets:
eval_dataloaders.append(
(ds_name, get_eval_dataloader(args.dataset_root, ds_name))
)
if not args.debug:
final_dataloaders = [dl for dl in eval_dataloaders]
ds_name = "dynamic_replica"
final_dataloaders.append(
(ds_name, get_eval_dataloader(args.dataset_root, ds_name))
)
ds_name = "tapvid_robotap"
final_dataloaders.append(
(ds_name, get_eval_dataloader(args.dataset_root, ds_name))
)
ds_name = "tapvid_kinetics_first"
final_dataloaders.append(
(ds_name, get_eval_dataloader(args.dataset_root, ds_name))
)
evaluator = Evaluator(args.ckpt_path)
visualizer = Visualizer(
save_dir=args.ckpt_path,
pad_value=180,
fps=1,
show_first_frame=0,
tracks_leave_trace=0,
)
if args.model_name == "cotracker_three":
if args.offline_model:
model = CoTrackerThreeOffline(
stride=args.model_stride,
corr_radius=args.corr_radius,
corr_levels=args.corr_levels,
window_len=args.sliding_window_len,
num_virtual_tracks=args.num_virtual_tracks,
model_resolution=args.crop_size,
linear_layer_for_vis_conf=args.linear_layer_for_vis_conf,
)
else:
model = CoTrackerThreeOnline(
stride=args.model_stride,
corr_radius=args.corr_radius,
corr_levels=args.corr_levels,
window_len=args.sliding_window_len,
num_virtual_tracks=args.num_virtual_tracks,
model_resolution=args.crop_size,
linear_layer_for_vis_conf=args.linear_layer_for_vis_conf,
)
else:
raise ValueError(f"Model {args.model_name} doesn't exist")
with open(args.ckpt_path + "/meta.json", "w") as file:
json.dump(vars(args), file, sort_keys=True, indent=4)
model.cuda()
train_dataset = get_train_dataset(args)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
worker_init_fn=seed_worker,
generator=g,
pin_memory=True,
collate_fn=collate_fn_train,
drop_last=True,
)
train_loader = self.setup_dataloaders(train_loader, move_to_device=False)
print("LEN TRAIN LOADER", len(train_loader))
optimizer, scheduler = fetch_optimizer(args, model)
total_steps = 0
if self.global_rank == 0:
logger = Logger(model, scheduler, ckpt_path=args.ckpt_path)
folder_ckpts = [
f
for f in os.listdir(args.ckpt_path)
if not os.path.isdir(f) and f.endswith(".pth") and not "final" in f
]
if len(folder_ckpts) > 0:
ckpt_path = sorted(folder_ckpts)[-1]
ckpt = self.load(os.path.join(args.ckpt_path, ckpt_path))
logging.info(f"Loading checkpoint {ckpt_path}")
if "model" in ckpt:
model.load_state_dict(ckpt["model"])
else:
model.load_state_dict(ckpt)
if "optimizer" in ckpt:
logging.info("Load optimizer")
optimizer.load_state_dict(ckpt["optimizer"])
if "scheduler" in ckpt:
logging.info("Load scheduler")
scheduler.load_state_dict(ckpt["scheduler"])
if "total_steps" in ckpt:
total_steps = ckpt["total_steps"]
logging.info(f"Load total_steps {total_steps}")
elif args.restore_ckpt is not None:
assert args.restore_ckpt.endswith(".pth") or args.restore_ckpt.endswith(
".pt"
)
logging.info("Loading checkpoint...")
strict = False
state_dict = self.load(args.restore_ckpt)
if "model" in state_dict:
state_dict = state_dict["model"]
state_dict = {
k: v
for k, v in state_dict.items()
if "time_emb" not in k and "pos_emb" not in k
}
if list(state_dict.keys())[0].startswith("module."):
state_dict = {
k.replace("module.", ""): v for k, v in state_dict.items()
}
model.load_state_dict(state_dict, strict=strict)
logging.info(f"Done loading checkpoint")
model, optimizer = self.setup(model, optimizer, move_to_device=False)
model.train()
save_freq = args.save_freq
scaler = GradScaler(enabled=False)
should_keep_training = True
global_batch_num = 0
epoch = -1
while should_keep_training:
epoch += 1
for i_batch, batch in enumerate(tqdm(train_loader)):
batch, gotit = batch
if not all(gotit):
print("batch is None")
continue
dataclass_to_cuda_(batch)
optimizer.zero_grad(set_to_none=True)
assert model.training
output = forward_batch(batch, model, args)
loss = 0
for k, v in output.items():
if "loss" in v:
loss += v["loss"]
if self.global_rank == 0:
for k, v in output.items():
if "loss" in v:
logger.writer.add_scalar(
f"live_{k}_loss", v["loss"].item(), total_steps
)
if "metrics" in v:
logger.push(v["metrics"], k)
if total_steps % save_freq == save_freq - 1:
visualizer.visualize(
video=batch.video.clone(),
tracks=batch.trajectory.clone()[..., :2],
visibility=batch.visibility.clone(),
filename="train_gt_traj_0",
writer=logger.writer,
step=total_steps,
)
visualizer.visualize(
video=batch.video.clone(),
tracks=output["flow"]["predictions"][None],
visibility=output["visibility"]["predictions"][None] > 0.8,
filename="train_pred_traj_0",
writer=logger.writer,
step=total_steps,
)
if len(output) > 1:
logger.writer.add_scalar(
f"live_total_loss", loss.item(), total_steps
)
logger.writer.add_scalar(
f"learning_rate", optimizer.param_groups[0]["lr"], total_steps
)
global_batch_num += 1
self.barrier()
self.backward(scaler.scale(loss))
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scheduler.step()
scaler.update()
total_steps += 1
if self.global_rank == 0:
if (i_batch >= len(train_loader) - 1) or (
total_steps == 1 and args.validate_at_start
):
if (epoch + 1) % args.save_every_n_epoch == 0:
ckpt_iter = "0" * (6 - len(str(total_steps))) + str(
total_steps
)
save_path = Path(
f"{args.ckpt_path}/model_{args.model_name}_{ckpt_iter}.pth"
)
save_dict = {
"model": model.module.module.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"total_steps": total_steps,
}
logging.info(f"Saving file {save_path}")
self.save(save_dict, save_path)
if (epoch + 1) % args.evaluate_every_n_epoch == 0 or (
args.validate_at_start and epoch == 0
):
run_test_eval(
evaluator,
model,
eval_dataloaders,
logger.writer,
total_steps,
query_random=(
args.query_sampling_method is not None
and "random" in args.query_sampling_method
),
)
model.train()
torch.cuda.empty_cache()
self.barrier()
if total_steps > args.num_steps:
should_keep_training = False
break
if self.global_rank == 0:
print("FINISHED TRAINING")
PATH = f"{args.ckpt_path}/{args.model_name}_final.pth"
torch.save(model.module.module.state_dict(), PATH)
run_test_eval(
evaluator,
model,
final_dataloaders,
logger.writer,
total_steps,
query_random=(
args.query_sampling_method is not None
and "random" in args.query_sampling_method
),
)
logger.close()
if __name__ == "__main__":
signal.signal(signal.SIGUSR1, sig_handler)
signal.signal(signal.SIGTERM, term_handler)
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default="cotracker_three", help="model name")
parser.add_argument("--restore_ckpt", help="path to restore a checkpoint")
parser.add_argument("--ckpt_path", help="path to save checkpoints")
parser.add_argument(
"--batch_size", type=int, default=4, help="batch size used during training."
)
parser.add_argument("--num_nodes", type=int, default=1)
parser.add_argument(
"--num_workers", type=int, default=10, help="number of dataloader workers"
)
parser.add_argument(
"--mixed_precision", action="store_true", help="use mixed precision"
)
parser.add_argument("--lr", type=float, default=0.0005, help="max learning rate.")
parser.add_argument(
"--wdecay", type=float, default=0.00001, help="Weight decay in optimizer."
)
parser.add_argument(
"--num_steps", type=int, default=200000, help="length of training schedule."
)
parser.add_argument(
"--evaluate_every_n_epoch",
type=int,
default=1,
help="evaluate during training after every n epochs, after every epoch by default",
)
parser.add_argument(
"--save_every_n_epoch",
type=int,
default=1,
help="save checkpoints during training after every n epochs, after every epoch by default",
)
parser.add_argument(
"--validate_at_start",
action="store_true",
help="whether to run evaluation before training starts",
)
parser.add_argument(
"--save_freq",
type=int,
default=100,
help="frequency of trajectory visualization during training",
)
parser.add_argument(
"--traj_per_sample",
type=int,
default=768,
help="the number of trajectories to sample for training",
)
parser.add_argument(
"--dataset_root", type=str, help="path lo all the datasets (train and eval)"
)
parser.add_argument(
"--train_iters",
type=int,
default=4,
help="number of updates to the disparity field in each forward pass.",
)
parser.add_argument(
"--sequence_len", type=int, default=8, help="train sequence length"
)
parser.add_argument(
"--eval_datasets",
nargs="+",
default=["tapvid_davis_first"],
help="what datasets to use for evaluation",
)
parser.add_argument(
"--train_datasets",
nargs="+",
default=["kubric"],
help="what datasets to use for evaluation",
)
parser.add_argument(
"--random_frame_rate",
action="store_true",
help="remove space attention from CoTracker",
)
parser.add_argument(
"--num_virtual_tracks",
type=int,
default=None,
help="stride of the CoTracker feature network",
)
parser.add_argument(
"--dont_use_augs",
action="store_true",
help="don't apply augmentations during training",
)
parser.add_argument(
"--offline_model",
action="store_true",
help="only sample trajectories with points visible on the first frame",
)
parser.add_argument(
"--sliding_window_len",
type=int,
default=16,
help="length of the CoTracker sliding window",
)
parser.add_argument(
"--model_stride",
type=int,
default=4,
help="stride of the CoTracker feature network",
)
parser.add_argument(
"--corr_radius",
type=int,
default=3,
help="stride of the CoTracker feature network",
)
parser.add_argument(
"--corr_levels",
type=int,
default=4,
help="stride of the CoTracker feature network",
)
parser.add_argument(
"--crop_size",
type=int,
nargs="+",
default=[384, 512],
help="crop videos to this resolution during training",
)
parser.add_argument(
"--eval_max_seq_len",
type=int,
default=1000,
help="maximum length of evaluation videos",
)
parser.add_argument(
"--query_sampling_method",
type=str,
help="path lo all the datasets (train and eval)",
)
parser.add_argument(
"--random_number_traj",
action="store_true",
help="only sample trajectories with points visible on the first frame",
)
parser.add_argument(
"--add_huber_loss",
action="store_true",
help="only sample trajectories with points visible on the first frame",
)
parser.add_argument(
"--debug",
action="store_true",
help="only sample trajectories with points visible on the first frame",
)
parser.add_argument(
"--random_seq_len",
action="store_true",
help="only sample trajectories with points visible on the first frame",
)
parser.add_argument(
"--linear_layer_for_vis_conf",
action="store_true",
help="stride of the CoTracker feature network",
)
parser.add_argument(
"--train_only_on_visible",
action="store_true",
help="stride of the CoTracker feature network",
)
args = parser.parse_args()
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
)
Path(args.ckpt_path).mkdir(exist_ok=True, parents=True)
from pytorch_lightning.strategies import DDPStrategy
Lite(
strategy=DDPStrategy(find_unused_parameters=False),
devices="auto",
accelerator="gpu",
precision="bf16" if args.mixed_precision else 32,
num_nodes=args.num_nodes,
).run(args)