Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RuntimeError: Default process group has not been initialized, please make sure to call init_process_group. #4673

Closed
qomhmd opened this issue Nov 20, 2022 · 2 comments

Comments

@qomhmd
Copy link

qomhmd commented Nov 20, 2022

Of note: I've read #3972 but it didn't help much.

Instructions To Reproduce the Issue:

  1. Full runnable code or full changes you made:

I tried to train DeepLabV3+ architecture with a customized config having ResNet18 (converted to .pkl from https://download.pytorch.org/models/resnet18-f37072fd.pth) as the backbone:

_BASE_: "detectron2/projects/DeepLab/configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml"
MODEL:
  WEIGHTS: "r18.pkl"
  BACKBONE:
    NAME: "build_resnet_backbone"
  RESNETS:
    DEPTH: 18
    RES2_OUT_CHANNELS: 64
    STEM_OUT_CHANNELS: 64
    RES5_DILATION: 1
    NUM_GROUPS: 1
  ROI_HEADS:
    NUM_CLASSES: 1

on MoNuSeg 2020 dataset.

  1. What exact command you run:
cfg = get_cfg()
add_deeplab_config(cfg)
cfg.merge_from_file('/kaggle/input/deeplab-v3-plus-models/deeplab_v3_plus_R_18_os16_mg124_poly_90k_bs16.yaml')
cfg.DATASETS.TRAIN = ('monuseg_train',)
cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 2
cfg.SOLVER.IMS_PER_BATCH = 16
cfg.SOLVER.BASE_LR = 0.01
cfg.SOLVER.MAX_ITER = 300
cfg.SOLVER.LR_SCHEDULER_NAME = 'WarmupMultiStepLR'
cfg.SOLVER.STEPS = []
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1

os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = DefaultTrainer(cfg) 
trainer.resume_or_load(resume=False)
trainer.train()

I also used the following lines to also try Trainer code (from DeepLab project train_net.py):

cfg.SOLVER.LR_SCHEDULER_NAME = 'WarmupPolyLR'
trainer = Trainer(cfg)
  1. Full logs or other relevant observations:
[11/20 16:16:06 d2.engine.defaults]: Model:
SemanticSegmentor(
  (backbone): ResNet(
    (stem): BasicStem(
      (conv1): Conv2d(
        3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
        (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (res2): Sequential(
      (0): BasicBlock(
        (conv1): Conv2d(
          64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (conv2): Conv2d(
          64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(
          64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (conv2): Conv2d(
          64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
    )
    (res3): Sequential(
      (0): BasicBlock(
        (shortcut): Conv2d(
          64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
          (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (conv1): Conv2d(
          64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (conv2): Conv2d(
          128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(
          128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (conv2): Conv2d(
          128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
    )
    (res4): Sequential(
      (0): BasicBlock(
        (shortcut): Conv2d(
          128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
          (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (conv1): Conv2d(
          128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (conv2): Conv2d(
          256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(
          256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (conv2): Conv2d(
          256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
    )
    (res5): Sequential(
      (0): BasicBlock(
        (shortcut): Conv2d(
          256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
          (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (conv1): Conv2d(
          256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (conv2): Conv2d(
          512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): BasicBlock(
        (conv1): Conv2d(
          512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (conv2): Conv2d(
          512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
          (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
    )
  )
  (sem_seg_head): DeepLabV3PlusHead(
    (decoder): ModuleDict(
      (res2): ModuleDict(
        (project_conv): Conv2d(
          64, 48, kernel_size=(1, 1), stride=(1, 1), bias=False
          (norm): SyncBatchNorm(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (fuse_conv): Sequential(
          (0): Conv2d(
            304, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
          (1): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
      )
      (res5): ModuleDict(
        (project_conv): ASPP(
          (convs): ModuleList(
            (0): Conv2d(
              512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
              (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
            (1): Conv2d(
              512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(6, 6), dilation=(6, 6), bias=False
              (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
            (2): Conv2d(
              512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(12, 12), dilation=(12, 12), bias=False
              (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
            (3): Conv2d(
              512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(18, 18), dilation=(18, 18), bias=False
              (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            )
            (4): Sequential(
              (0): AvgPool2d(kernel_size=(16, 32), stride=1, padding=0)
              (1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
            )
          )
          (project): Conv2d(
            1280, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (fuse_conv): None
      )
    )
    (predictor): Conv2d(256, 19, kernel_size=(1, 1), stride=(1, 1))
    (loss): DeepLabCE(
      (criterion): CrossEntropyLoss()
    )
  )
)
[11/20 16:16:07 d2.data.dataset_mapper]: [DatasetMapper] Augmentations used in training: [RandomCrop(crop_type='absolute', crop_size=[512, 1024]), ResizeShortestEdge(short_edge_length=(512, 768, 1024, 1280, 1536, 1792, 2048), max_size=4096, sample_style='choice'), RandomFlip()]
[11/20 16:16:07 d2.data.build]: Using training sampler TrainingSampler
[11/20 16:16:07 d2.data.common]: Serializing the dataset using: <class 'detectron2.data.common.NumpySerializedList'>
[11/20 16:16:07 d2.data.common]: Serializing 37 elements to byte tensors and concatenating them all ...
[11/20 16:16:07 d2.data.common]: Serialized dataset takes 0.01 MiB
[11/20 16:16:12 d2.checkpoint.c2_model_loading]: Following weights matched with submodule backbone:
| Names in Model    | Names in Checkpoint                                                               | Shapes                                    |
|:------------------|:----------------------------------------------------------------------------------|:------------------------------------------|
| res2.0.conv1.*    | res2.0.conv1.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (64,) (64,) (64,) (64,) (64,64,3,3)       |
| res2.0.conv2.*    | res2.0.conv2.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (64,) (64,) (64,) (64,) (64,64,3,3)       |
| res2.1.conv1.*    | res2.1.conv1.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (64,) (64,) (64,) (64,) (64,64,3,3)       |
| res2.1.conv2.*    | res2.1.conv2.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (64,) (64,) (64,) (64,) (64,64,3,3)       |
| res3.0.conv1.*    | res3.0.conv1.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (128,) (128,) (128,) (128,) (128,64,3,3)  |
| res3.0.conv2.*    | res3.0.conv2.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (128,) (128,) (128,) (128,) (128,128,3,3) |
| res3.0.shortcut.* | res3.0.shortcut.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight} | (128,) (128,) (128,) (128,) (128,64,1,1)  |
| res3.1.conv1.*    | res3.1.conv1.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (128,) (128,) (128,) (128,) (128,128,3,3) |
| res3.1.conv2.*    | res3.1.conv2.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (128,) (128,) (128,) (128,) (128,128,3,3) |
| res4.0.conv1.*    | res4.0.conv1.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (256,) (256,) (256,) (256,) (256,128,3,3) |
| res4.0.conv2.*    | res4.0.conv2.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (256,) (256,) (256,) (256,) (256,256,3,3) |
| res4.0.shortcut.* | res4.0.shortcut.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) (256,) (256,) (256,) (256,128,1,1) |
| res4.1.conv1.*    | res4.1.conv1.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (256,) (256,) (256,) (256,) (256,256,3,3) |
| res4.1.conv2.*    | res4.1.conv2.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (256,) (256,) (256,) (256,) (256,256,3,3) |
| res5.0.conv1.*    | res5.0.conv1.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (512,) (512,) (512,) (512,) (512,256,3,3) |
| res5.0.conv2.*    | res5.0.conv2.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (512,) (512,) (512,) (512,) (512,512,3,3) |
| res5.0.shortcut.* | res5.0.shortcut.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) (512,) (512,) (512,) (512,256,1,1) |
| res5.1.conv1.*    | res5.1.conv1.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (512,) (512,) (512,) (512,) (512,512,3,3) |
| res5.1.conv2.*    | res5.1.conv2.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}    | (512,) (512,) (512,) (512,) (512,512,3,3) |
| stem.conv1.*      | stem.conv1.{norm.bias,norm.running_mean,norm.running_var,norm.weight,weight}      | (64,) (64,) (64,) (64,) (64,3,7,7)        |
[11/20 16:16:14 d2.engine.train_loop]: Starting training from iteration 0
ERROR [11/20 16:16:22 d2.engine.train_loop]: Exception during training:
Traceback (most recent call last):
  File "/opt/conda/lib/python3.7/site-packages/detectron2/engine/train_loop.py", line 149, in train
    self.run_step()
  File "/opt/conda/lib/python3.7/site-packages/detectron2/engine/defaults.py", line 494, in run_step
    self._trainer.run_step()
  File "/opt/conda/lib/python3.7/site-packages/detectron2/engine/train_loop.py", line 274, in run_step
    loss_dict = self.model(data)
  File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
    return forward_call(*input, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/detectron2/modeling/meta_arch/semantic_seg.py", line 108, in forward
    features = self.backbone(images.tensor)
  File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
    return forward_call(*input, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/detectron2/modeling/backbone/resnet.py", line 445, in forward
    x = self.stem(x)
  File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
    return forward_call(*input, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/detectron2/modeling/backbone/resnet.py", line 356, in forward
    x = self.conv1(x)
  File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
    return forward_call(*input, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/detectron2/layers/wrappers.py", line 117, in forward
    x = self.norm(x)
  File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
    return forward_call(*input, **kwargs)
  File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/batchnorm.py", line 731, in forward
    world_size = torch.distributed.get_world_size(process_group)
  File "/opt/conda/lib/python3.7/site-packages/torch/distributed/distributed_c10d.py", line 867, in get_world_size
    return _get_group_size(group)
  File "/opt/conda/lib/python3.7/site-packages/torch/distributed/distributed_c10d.py", line 325, in _get_group_size
    default_pg = _get_default_group()
  File "/opt/conda/lib/python3.7/site-packages/torch/distributed/distributed_c10d.py", line 430, in _get_default_group
    "Default process group has not been initialized, "
RuntimeError: Default process group has not been initialized, please make sure to call init_process_group.
[11/20 16:16:22 d2.engine.hooks]: Total training time: 0:00:08 (0:00:00 on hooks)
[11/20 16:16:22 d2.utils.events]:  iter: 0    lr: N/A  max_mem: 7348M

Environment:

  • Kaggle platform with both accelerators: GPU T4 x2 and GPU P100:
----------------------  -------------------------------------------------------------------------------
sys.platform            linux
Python                  3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 06:08:53) [GCC 9.4.0]
numpy                   1.21.6
detectron2              0.6 @/opt/conda/lib/python3.7/site-packages/detectron2
Compiler                GCC 9.4
CUDA compiler           CUDA 11.0
detectron2 arch flags   7.5
DETECTRON2_ENV_MODULE   <not set>
PyTorch                 1.11.0 @/opt/conda/lib/python3.7/site-packages/torch
PyTorch debug build     False
GPU available           Yes
GPU 0,1                 Tesla T4 (arch=7.5)
Driver version          470.82.01
CUDA_HOME               /usr/local/cuda
Pillow                  9.1.1
torchvision             0.12.0 @/opt/conda/lib/python3.7/site-packages/torchvision
torchvision arch flags  3.7, 6.0, 7.0, 7.5
fvcore                  0.1.5.post20220512
iopath                  0.1.9
cv2                     4.5.4
----------------------  -------------------------------------------------------------------------------
PyTorch built with:
  - GCC 9.4
  - C++ Version: 201402
  - Intel(R) oneAPI Math Kernel Library Version 2022.1-Product Build 20220311 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.5.2 (Git Hash a9302535553c73243c632ad3c4c80beec3d19a1e)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX512
  - CUDA Runtime 11.0
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_70,code=compute_70;-gencode;arch=compute_75,code=compute_75
  - CuDNN 8.0.5
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.0, CUDNN_VERSION=8.0.5, CXX_COMPILER=/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

Testing NCCL connectivity ... this should not hang.
NCCL succeeded.
  • Google Colab:
----------------------  ----------------------------------------------------------------
sys.platform            linux
Python                  3.7.15 (default, Oct 12 2022, 19:14:55) [GCC 7.5.0]
numpy                   1.21.6
detectron2              0.6 @/usr/local/lib/python3.7/dist-packages/detectron2
Compiler                GCC 7.5
CUDA compiler           CUDA 11.2
detectron2 arch flags   7.5
DETECTRON2_ENV_MODULE   <not set>
PyTorch                 1.12.1+cu113 @/usr/local/lib/python3.7/dist-packages/torch
PyTorch debug build     False
GPU available           Yes
GPU 0                   Tesla T4 (arch=7.5)
Driver version          460.32.03
CUDA_HOME               /usr/local/cuda
Pillow                  7.1.2
torchvision             0.13.1+cu113 @/usr/local/lib/python3.7/dist-packages/torchvision
torchvision arch flags  3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
fvcore                  0.1.5.post20220512
iopath                  0.1.9
cv2                     4.6.0
----------------------  ----------------------------------------------------------------
PyTorch built with:
  - GCC 9.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.3
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  - CuDNN 8.3.2  (built against CUDA 11.5)
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 
@qomhmd
Copy link
Author

qomhmd commented Nov 20, 2022

I've read #3972 but it didn't help much.

@ppwwyyxx
Copy link
Contributor

Closing as duplicate of #3972. If the answer there is not clear for you, ask for clarification there instead.

@github-actions github-actions bot locked as resolved and limited conversation to collaborators Sep 23, 2023
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants