This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathse3_so3_util.py
238 lines (197 loc) · 7.41 KB
/
se3_so3_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
SE3 SO3 utilities
====================================
@author: gsutanto
@comment: implemented from "A Mathematical Introduction to Robotic Manipulation"
textbook by Murray et al., page 413-414
"""
import torch
assert_epsilon = 1.0e-3
def integrateAxisAngle(axis_angle, omega, dt):
R_curr = expMapso3(getSkewSymMatFromVec3(axis_angle))
R_delta = expMapso3(getSkewSymMatFromVec3(omega * dt))
R_next = torch.matmul(R_delta, R_curr)
axis_angle_next = getVec3FromSkewSymMat(logMapSO3(R_next))
return axis_angle_next
def computeAngularError(source_axis_angle, target_axis_angle):
R_source = expMapso3(getSkewSymMatFromVec3(source_axis_angle))
R_target = expMapso3(getSkewSymMatFromVec3(target_axis_angle))
R_delta = torch.matmul(R_target, R_source.T)
angular_error = getVec3FromSkewSymMat(logMapSO3(R_delta))
return angular_error
def convertAxisAngleToQuaternion(axis_angle, epsilon=1.0e-5):
if not torch.is_tensor(axis_angle):
axis_angle = torch.Tensor(axis_angle)
assert axis_angle.shape[0] == 3
angle = torch.norm(axis_angle)
if angle > epsilon:
axis = axis_angle / angle
quat = axis_angle.new_zeros(4)
quat[:3] = axis * torch.sin(angle / 2.0)
quat[3] = torch.cos(angle / 2.0)
else:
quat = torch.tensor(
[0.0, 0.0, 0.0, 1.0], device=axis_angle.device, dtype=axis_angle.dtype
)
quat = quat / torch.norm(quat)
return quat
def convertQuaternionToAxisAngle(quat, alpha=0.05, epsilon=1.0e-15):
if not torch.is_tensor(quat):
quat = torch.Tensor(quat)
assert quat.shape[0] == 4
assert (torch.norm(quat) > 1.0 - alpha) and (torch.norm(quat) < 1.0 + alpha)
quat = quat / torch.norm(quat)
angle = 2.0 * torch.acos(quat[3])
axis = quat[:3] / (torch.sin(angle / 2.0) + epsilon)
axis_angle = axis * angle
return axis_angle
def getSkewSymMatFromVec3(omega):
omega = omega.reshape(3)
omegahat = omega.new_zeros((3, 3))
sign_multiplier = -1
for i in range(3):
for j in range(i + 1, 3):
omegahat[i, j] = sign_multiplier * omega[3 - i - j]
omegahat[j, i] = -sign_multiplier * omega[3 - i - j]
sign_multiplier = -sign_multiplier
return omegahat
def getVec3FromSkewSymMat(omegahat, epsilon=1.0e-14):
assert torch.norm(torch.diag(omegahat)) < assert_epsilon, (
"omegahat = \n%s" % omegahat
)
for i in range(3):
for j in range(i + 1, 3):
v1 = omegahat[i, j]
v2 = omegahat[j, i]
err = torch.abs(v1 + v2)
assert err < epsilon, "err = %f >= %f = epsilon" % (err, epsilon)
omega = omegahat.new_zeros(3)
omega[0] = 0.5 * (omegahat[2, 1] - omegahat[1, 2])
omega[1] = 0.5 * (omegahat[0, 2] - omegahat[2, 0])
omega[2] = 0.5 * (omegahat[1, 0] - omegahat[0, 1])
return omega
def getKseehatFromWrench(wrench):
assert wrench.shape[0] == 6
v = wrench[:3]
omega = wrench[3:6]
omegahat = getSkewSymMatFromVec3(omega)
kseehat = wrench.new_zeros((4, 4))
kseehat[:3, :3] = omegahat
kseehat[:3, 3] = v
return kseehat
def getWrenchFromKseehat(kseehat, epsilon=1.0e-14):
assert torch.norm(kseehat[3, :]) < assert_epsilon, "kseehat = \n%s" % kseehat
v = kseehat[:3, 3].reshape((3, 1))
omegahat = kseehat[:3, :3]
omega = getVec3FromSkewSymMat(omegahat, epsilon).reshape((3, 1))
wrench = torch.stack([v, omega])
assert wrench.shape[0] == 6, "wrench.shape[0] = %d" % wrench.shape[0]
return wrench.reshape((6,))
def getHomogeneousTransformMatrixFromAxes(orig, axis_x, axis_y, axis_z):
T = torch.eye(4)
T[:3, 0] = axis_x
T[:3, 1] = axis_y
T[:3, 2] = axis_z
T[:3, 3] = orig
return T
def getAxesFromHomogeneousTransformMatrix(T):
assert torch.norm(T[3, :3]) < assert_epsilon
assert torch.abs(T[3, 3] - 1.0) < assert_epsilon
axis_x = T[:3, 0]
axis_y = T[:3, 1]
axis_z = T[:3, 2]
orig = T[:3, 3]
return orig, axis_x, axis_y, axis_z
def getInverseHomogeneousTransformMatrix(T, epsilon=1.0e-14):
assert torch.norm(T[3, :3]) < assert_epsilon
assert torch.abs(T[3, 3] - 1.0) < assert_epsilon
R = T[:3, :3]
assert (
torch.abs(torch.abs(torch.det(R)) - 1.0) < assert_epsilon
), "det(R) = %f" % torch.det(R)
p = T[:3, 3]
Tinv = torch.eye(4, device=T.device, dtype=T.dtype)
Rinv = R.T
pinv = -torch.matmul(Rinv, p)
Tinv[:3, :3] = Rinv
Tinv[:3, 3] = pinv
return Tinv
def logMapSO3(R, epsilon=1.0e-14):
assert R.shape[0] == 3
assert R.shape[1] == 3
assert (
torch.abs(torch.abs(torch.det(R)) - 1.0) < assert_epsilon
), "det(R) = %f" % torch.det(R)
half_traceR_minus_one = (torch.trace(R) - 1.0) / 2.0
if half_traceR_minus_one < -R.new_ones(1):
print("Warning: half_traceR_minus_one = %f < -1.0" % half_traceR_minus_one)
half_traceR_minus_one = -R.new_ones(1)
if half_traceR_minus_one > 1.0:
print("Warning: half_traceR_minus_one = %f > 1.0" % half_traceR_minus_one)
half_traceR_minus_one = R.new_ones(1)
theta = torch.acos(half_traceR_minus_one)
omegahat = (R - R.T) / ((2.0 * torch.sin(theta)) + epsilon)
return theta * omegahat
def expMapso3(omegahat, epsilon=1.0e-14):
assert omegahat.shape[0] == 3
assert omegahat.shape[1] == 3
omega = getVec3FromSkewSymMat(omegahat, epsilon)
norm_omega = torch.norm(omega)
exp_omegahat = (
torch.eye(3, device=omegahat.device, dtype=omegahat.dtype)
+ ((torch.sin(norm_omega) / (norm_omega + epsilon)) * omegahat)
+ (
((1.0 - torch.cos(norm_omega)) / (norm_omega + epsilon) ** 2)
* torch.matmul(omegahat, omegahat)
)
)
return exp_omegahat
def logMapSE3(T, epsilon=1.0e-14):
assert T.shape[0] == 4
assert T.shape[1] == 4
assert torch.norm(T[3, :3]) < assert_epsilon
assert torch.abs(T[3, 3] - 1.0) < assert_epsilon
R = T[:3, :3]
omegahat = logMapSO3(R, epsilon)
omega = getVec3FromSkewSymMat(omegahat, epsilon)
norm_omega = torch.norm(omega)
Ainv = (
torch.eye(3, device=T.device, dtype=T.dtype)
- (0.5 * omegahat)
+ (
(
(
(2.0 * torch.sin(norm_omega))
- (norm_omega * (1.0 + torch.cos(norm_omega)))
)
/ ((2 * (norm_omega ** 2) * torch.sin(norm_omega)) + epsilon)
)
* torch.matmul(omegahat, omegahat)
)
)
p = T[:3, 3]
kseehat = T.new_zeros((4, 4))
kseehat[:3, :3] = omegahat
kseehat[:3, 3] = torch.matmul(Ainv, p)
return kseehat
def expMapse3(kseehat, epsilon=1.0e-14):
assert kseehat.shape[0] == 4
assert kseehat.shape[1] == 4
assert torch.norm(kseehat[3, :]) < assert_epsilon
omegahat = kseehat[:3, :3]
exp_omegahat = expMapso3(omegahat, epsilon)
omega = getVec3FromSkewSymMat(omegahat, epsilon)
norm_omega = torch.norm(omega)
A = (
torch.eye(3, device=kseehat.device, dtype=kseehat.dtype)
+ (((1.0 - torch.cos(norm_omega)) / (norm_omega + epsilon) ** 2) * omegahat)
+ (
((norm_omega - torch.sin(norm_omega)) / ((norm_omega + epsilon) ** 3))
* torch.matmul(omegahat, omegahat)
)
)
v = kseehat[:3, 3]
exp_kseehat = torch.eye(4, device=kseehat.device, dtype=kseehat.dtype)
exp_kseehat[:3, :3] = exp_omegahat
exp_kseehat[:3, 3] = torch.matmul(A, v)
return exp_kseehat