forked from huawei-noah/Efficient-AI-Backbones
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hubconf.py
57 lines (50 loc) · 2.47 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# 2022.09.16-GhostNet & SNN-MLP definition for pytorch hub
# Huawei Technologies Co., Ltd. <foss@huawei.com>
dependencies = ['torch']
import torch
from ghostnet_pytorch.ghostnet import ghostnet
from snnmlp_pytorch.models.snn_mlp import SNNMLP
state_dict_url = 'https://github.com/huawei-noah/ghostnet/raw/master/ghostnet_pytorch/models/state_dict_73.98.pth'
state_dict_url_snnmlp_t = 'https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/snnmlp/snnmlp_tiny_81.88.pt'
state_dict_url_snnmlp_s = 'https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/snnmlp/snnmlp_small_83.30.pt'
state_dict_url_snnmlp_b = 'https://github.com/huawei-noah/Efficient-AI-Backbones/releases/download/snnmlp/snnmlp_base_83.59.pt'
def ghostnet_1x(pretrained=False, **kwargs):
""" # This docstring shows up in hub.help()
GhostNet 1.0x model
pretrained (bool): kwargs, load pretrained weights into the model
"""
model = ghostnet(num_classes=1000, width=1.0, dropout=0.2)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(state_dict_url, progress=True)
model.load_state_dict(state_dict)
return model
def snnmlp_t(pretrained=False, **kwargs):
""" # This docstring shows up in hub.help()
SNN-MLP tiny model
pretrained (bool): kwargs, load pretrained weights into the model
"""
model = SNNMLP(num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], drop_path_rate=0.2)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(state_dict_url_snnmlp_t, progress=True)
model.load_state_dict(state_dict)
return model
def snnmlp_s(pretrained=False, **kwargs):
""" # This docstring shows up in hub.help()
SNN-MLP small model
pretrained (bool): kwargs, load pretrained weights into the model
"""
model = SNNMLP(num_classes=1000, embed_dim=96, depths=[2, 2, 18, 2], drop_path_rate=0.3)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(state_dict_url_snnmlp_s, progress=True)
model.load_state_dict(state_dict)
return model
def snnmlp_b(pretrained=False, **kwargs):
""" # This docstring shows up in hub.help()
SNN-MLP base model
pretrained (bool): kwargs, load pretrained weights into the model
"""
model = SNNMLP(num_classes=1000, embed_dim=128, depths=[2, 2, 18, 2], drop_path_rate=0.5)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(state_dict_url_snnmlp_b, progress=True)
model.load_state_dict(state_dict)
return model