The goal of huggingfaceR
is to to bring state-of-the-art NLP models to
R. huggingfaceR
is built on top of Hugging Face’s
transformers library;
and has support for navigating the Hugging Face Hub The
Hub.
Prior to installing huggingfaceR
please be sure to have your python
environment set up correctly.
install.packages("reticulate")
library(reticulate)
install_miniconda()
If you are having issues, more detailed instructions on how to install and configure python can be found here.
After that you can install the development version of huggingfaceR from GitHub with:
# install.packages("devtools")
devtools::install_github("farach/huggingfaceR")
huggingfaceR
makes use of the transformers
pipline()
abstraction
to quickly make pre-trained language models available for use in R. In
this example we will load the
distilbert-base-uncased-finetuned-sst-2-english
model and its
tokenizer into a pipeline object to obtain sentiment scores.
library(huggingfaceR)
distilBERT <- hf_load_pipeline(
model_id = "distilbert-base-uncased-finetuned-sst-2-english",
task = "text-classification"
)
#>
#>
#> distilbert-base-uncased-finetuned-sst-2-english is ready for text-classification
distilBERT
#> <transformers.pipelines.text_classification.TextClassificationPipeline object at 0x000001D0A8F71510>
With the pipeline now loaded, we can begin using the model.
distilBERT("I like you. I love you")
#> [[1]]
#> [[1]]$label
#> [1] "POSITIVE"
#>
#> [[1]]$score
#> [1] 0.9998739
We can use this pipeline in a typical tidyverse processing chunk. First
we load the tidyverse
.
library(tidyverse)
#> ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
#> ✔ ggplot2 3.4.0 ✔ purrr 1.0.0
#> ✔ tibble 3.1.8 ✔ dplyr 1.0.10
#> ✔ tidyr 1.2.1 ✔ stringr 1.5.0
#> ✔ readr 2.1.3 ✔ forcats 0.5.2
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag() masks stats::lag()
We can use the huggingfaceR
hf_load_dataset()
function to pull in
the emotion Hugging Face
dataset. This dataset contains English Twitter messages with six basic
emotions: anger, fear, love, sadness, and surprise. We are interested in
how well the Distilbert model classifies these emotions as either a
positive or a negative sentiment.
emo <- hf_load_dataset(
dataset = "emo",
split = "train",
as_tibble = TRUE,
label_name = "int2str"
)
emo_model <- emo %>%
sample_n(100) %>%
transmute(
text,
emotion_id = label,
emotion_name = label_name,
distilBERT_sent = distilBERT(text)
) %>%
unnest_wider(distilBERT_sent)
glimpse(emo_model)
#> Rows: 100
#> Columns: 5
#> $ text <chr> "on hotstar thanks found it whom u hate much", "what so g…
#> $ emotion_id <dbl> 0, 3, 3, 2, 1, 3, 0, 3, 2, 1, 0, 0, 0, 0, 1, 0, 2, 3, 1, …
#> $ emotion_name <chr> "others", "angry", "angry", "sad", "happy", "angry", "oth…
#> $ label <chr> "NEGATIVE", "POSITIVE", "NEGATIVE", "NEGATIVE", "NEGATIVE…
#> $ score <dbl> 0.9737250, 0.9995377, 0.9959581, 0.9969825, 0.9984096, 0.…
We can use ggplot2
to visualize the results.
emo_model |>
mutate(
label = paste0("Distilbert class:\n", label),
emotion_name = str_to_title(emotion_name)
) |>
ggplot(aes(x = emotion_name, y = score, color = label)) +
geom_boxplot(show.legend = FALSE, outlier.alpha = 0.4, ) +
scale_color_manual(values = c("#D55E00", "#6699CC")) +
facet_wrap(~ label) +
labs(
title = "Reviewing Distilbert classification predictions",
x = "Original label",
y = "Model score",
caption = "source:\nhttps://huggingface.co/datasets/emo"
) +
theme_minimal() +
theme(
plot.title = element_text(hjust = 0.5),
axis.text.x = element_text(angle = 45),
axis.title.y = element_text(margin = margin(t = 0, r = 10, b = 0, l = 0)),
axis.title.x = element_text(margin = margin(t = 10, r = 0, b = 0, l = 0))
)