-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdrawing_util.py
109 lines (88 loc) · 4.87 KB
/
drawing_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import cv2 as cv
import numpy as np
class DrawingTrackingInfo:
def __init__(self):
self.trajectory_len = 50
self.max_color = 150
self.tracks_id_colors = np.random.randint(low=0, high=255, size=(self.max_color, 3), dtype='uint8')
self.tracks = {}
def draw_tracking_info(self, image, bounding_boxes, tracking_ids):
"""
Create image of bounding boxes and tracking IDs on the input image.
Parameters:
- image: The input image (numpy array).
- bounding_boxes: List of n * 4 bounding boxes in the format (x, y, width, height).
- tracking_ids: List of tracking IDs corresponding to each bounding box.
Returns:
- None (displays the image with bounding boxes and tracking IDs).
"""
# Create a copy of image
image_cp = np.copy(image)
# Iterate through each bounding box and tracking ID
for bbox, track_id in zip(bounding_boxes, tracking_ids):
x1, y1, x2, y2 = bbox
# Draw the bounding box on the image
color_r, color_g, color_b = self.tracks_id_colors[track_id % self.max_color, :]
color_r, color_g, color_b = int(color_r), int(color_g), int(color_b)
color = tuple([color_r, color_g, color_b])
cv.rectangle(image_cp, (x1, y1), (x2, y2), color, 2)
# Keep record of previous position of each unique track id
if track_id not in self.tracks:
self.tracks[track_id] = [bbox]
else:
self.tracks[track_id].append(bbox)
# Draw trajectory of tracked object in some of the last frames
for bbox_i in self.tracks[track_id][-self.trajectory_len:]:
circle_x, circle_y = (bbox_i[0] + bbox_i[2])//2, bbox_i[3]
cv.circle(image_cp, (circle_x, circle_y), 3, color, 2)
# Display the tracking ID near the bounding box
text = f"ID: {track_id}"
cv.putText(image_cp, text, (x1, y1 - 10), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
return image_cp
class DrawingCountingInfo:
"""
A class that counts the number of unique cars entering specified regions in frames and displays this information.
"""
def __init__(self, regions):
self.max_color = 10
self.regions_colors = np.random.randint(low=0, high=255, size=(self.max_color, 3), dtype='uint8')
# Keep record of unique id tracks that entered each region
self.regions_count = {i:set() for i in range(len(regions))}
# if polygons for counting objects are defined, convert
# them to appropriate data type for using with opencv
if regions is not None:
for polygon_idx in range(len(regions)):
regions[polygon_idx] = np.array(regions[polygon_idx], dtype=np.int32)
self.polygons = regions
def draw_counting_info(self, image, bounding_boxes, tracking_ids):
# Create a copy of image
image_cp = np.copy(image)
# Draw the polygons on the image
for polygon_id, polygon_i in enumerate(self.polygons):
color_r, color_g, color_b = self.regions_colors[polygon_id % self.max_color, :]
color_r, color_g, color_b = int(color_r), int(color_g), int(color_b)
color = tuple([color_r, color_g, color_b])
# Reshape the array to a 2D array with 1 row and as many columns as needed
polygon_i = polygon_i.reshape((-1, 1, 2))
# Draw the polygon on the image
cv.polylines(image_cp, [polygon_i], isClosed=True, color=color, thickness=2)
polygon_start = (int(round(polygon_i[0, 0, 0])), int(round(polygon_i[0, 0, 1])))
cv.putText(image_cp, "{}".format(polygon_id+1), polygon_start, cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 100, 10), 2)
# Iterate through each bounding box and check it is inside regions or not
if bounding_boxes is not None:
for bbox, track_id in zip(bounding_boxes, tracking_ids):
x1, y1, x2, y2 = bbox
bottom_center_x = (x1+x2)/2.0
bottom_center_y = y2
bottom_center = (int(round(bottom_center_x)), int(round(bottom_center_y)))
# check the bottom of the bounding box is in which region
for polygon_idx, polygon_i in enumerate(self.polygons):
result = cv.pointPolygonTest(polygon_i, bottom_center, False)
if result == True:
self.regions_count[polygon_idx].add(track_id)
# Display number of counted vehicle for each region
text = ""
for set_idx in self.regions_count:
text += ", Region-{}: {}".format(set_idx+1, len(self.regions_count[set_idx]))
cv.putText(image_cp, text, (15, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
return image_cp