-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathFaceToolKit.py
45 lines (31 loc) · 1.46 KB
/
FaceToolKit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import tensorflow as tf
import numpy as np
from facenet import face
class Verification:
def __init__(self):
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
self.session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
self.images_placeholder = ''
self.embeddings = ''
self.phase_train_placeholder = ''
self.embedding_size = ''
self.session_closed = False
def __del__(self):
if not self.session_closed:
self.session.close()
def kill_session(self):
self.session_closed = True
self.session.close()
def load_model(self, model):
face.load_model(model, self.session)
def initial_input_output_tensors(self):
self.images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
self.embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
self.phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
self.embedding_size = self.embeddings.get_shape()[1]
def img_to_encoding(self, img, image_size):
image = face.make_image_tensor(img, image_size)
feed_dict = {self.images_placeholder: image, self.phase_train_placeholder:False }
emb_array = np.zeros((1, self.embedding_size))
emb_array[0, :] = self.session.run(self.embeddings, feed_dict=feed_dict)
return np.squeeze(emb_array)