-
Notifications
You must be signed in to change notification settings - Fork 2
/
demo_3d.m
66 lines (48 loc) · 2.05 KB
/
demo_3d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
% Demo of sparse SSM fitting procedure for ellipsoid pdm
%
% Author & Copyright (C) 2017: Florian Bernard (f.bernardpi[at]gmail[dot]com)
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU Affero General Public License as published
% by the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Affero General Public License for more details.
% You should have received a copy of the GNU Affero General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
clear;
close all;
%% LOAD DATA
load ellipsoids_pdm.mat
N = size(pdm.eigVec,1)/3; % numer of vertices
M = size(pdm.eigVec,2); % number of modes
%% RANDOMLY DRAW POINTS ON SHAPE SURFACE
P = 9; % number of sparse points
sigmaNoise = 0.01; % noise of sparse points
visualiseRandomSamples = 1; % flag for visualisation
% draw an alpha from a Gaussian distribution
alphaGt = mvnrnd(zeros(M,1), diag(pdm.eigVal))';
% create shape for the given alpha
v = reshape(pdm.meanShape(:) + pdm.eigVec*alphaGt, N, 3);
% create Matlab fv structure (triangular surface mesh) of the sampled shape
fv.faces = pdm.faces;
fv.vertices = v;
% select P points uniformly from surface
sparsePoints = sampleMeshSurfacePointsUniformly(fv, P, visualiseRandomSamples, sigmaNoise);
%% ANISO
paramsAniso = [];
paramsAniso.etaNormalError = 2; % importance of error along normal
alphaAniso = fitPdmAnisotropic(pdm, sparsePoints, paramsAniso);
%% ISO
paramsIso = [];
paramsIso.etaNormalError = 1;
alphaIso = fitPdmAnisotropic(pdm, sparsePoints, paramsIso);
%% ICP-based fitting
alphaIcp = fitPdmIcp(pdm, sparsePoints);
%% compare ANISO and ICP
disp(['Error of ANISO = ' num2str(norm(alphaGt-alphaAniso))]);
disp(['Error of ISO = ' num2str(norm(alphaGt-alphaIso))]);
disp(['Error of ICP = ' num2str(norm(alphaGt-alphaIcp))]);