forked from roryoday/improved-aesthetic-predictor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_predictor.py
126 lines (110 loc) · 3.59 KB
/
train_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# os.environ['CUDA_VISIBLE_DEVICES'] = "0" # in case you are using a multi GPU workstation, choose your GPU here
import json
import click
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from torch.utils.data import DataLoader, TensorDataset
from MLP import MLP
class dotdict(dict):
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
# load the training data
@click.command()
@click.option("--epochs", help="Number of epochs", type=int, default=-1)
@click.option("--out", help="Output file of model", type=str, required=True)
@click.option("--learning-rate", help="Learning Rate", type=float, default=1e-3)
@click.option(
"--val-percent",
help="Percent of embeddings to use for validation",
type=float,
default=0.05,
)
@click.option("--batch-size", help="Batch size", type=int, default=256)
@click.option("--num-workers", help="Number of workers", type=int, default=16)
@click.option(
"--embedding-file",
help="Name of embeddings file",
type=str,
default="embeddings/x_embeddings.npy",
)
@click.option(
"--score-file",
help="Name of score file",
type=str,
default="embeddings/y_ratings.npy",
)
@click.option(
"--device",
help="Torch device type (default uses cuda if avaliable)",
type=str,
default="default",
show_default=True,
)
@click.option(
"--seed",
help="random seed",
type=int,
)
def main(**kwargs):
opts = dotdict(kwargs)
pl.seed_everything(opts.seed, workers=True)
# if opts.device == "default" and torch.cuda.is_available():
# torch.set_float32_matmul_precision("high")
x = np.load(opts.embedding_file)
y = np.load(opts.score_file)
if len(x) != len(y):
raise ValueError(
f"Embedding and score file lengths don't match: {len(x)} vs {len(y)}"
)
# normalize ratings
y_norm = (y - y.mean()) / y.std()
mean = y_norm.mean()
print(np.mean(np.square(y_norm - mean)))
dataset = TensorDataset(torch.Tensor(x), torch.Tensor(y_norm))
train_dataset, val_dataset = torch.utils.data.random_split(
dataset, [1 - opts.val_percent, opts.val_percent]
)
train_loader = DataLoader(
train_dataset,
batch_size=opts.batch_size,
shuffle=True,
num_workers=opts.num_workers,
persistent_workers=True,
)
val_loader = DataLoader(
val_dataset,
batch_size=opts.batch_size,
num_workers=opts.num_workers,
persistent_workers=True,
)
model = MLP(x.shape[1], opts.learning_rate) # input size = embedding length
trainer = pl.Trainer(
max_epochs=opts.epochs,
callbacks=[
EarlyStopping(monitor="val_loss", patience=20, mode="min"),
ModelCheckpoint(
monitor="val_loss",
dirpath="models",
filename=opts.out,
save_weights_only=True,
verbose=True,
),
],
)
trainer.fit(model, train_loader, val_loader)
print("training done")
# inference test with dummy samples from the val set, sanity check
print("inference test with dummy samples from the val set, sanity check")
model.eval()
y_hat = model(torch.Tensor(x[:10]))
y_target = y_norm[:10]
print(y_hat)
print(y_target)
# rating mean and stddev in case we want to recover unstandardized ratings
with open(f"models/{opts.out}.json", "wt") as f:
json.dump({"mean": str(y.mean()), "std": str(y.std())}, f)
if __name__ == "__main__":
main()