-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmnist.go
127 lines (103 loc) · 3.46 KB
/
mnist.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/*
Copyright (c) 2018 XLAB d.o.o
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package main
import (
"math/big"
"github.com/fentec-project/gofe/data"
quad "github.com/fentec-project/gofe/quadratic"
)
// innerProdEncryption accepts the encryption c of (x, y)
// and vectors u, v. It manipulates the encryption in order
// to obtain the encryption of (x*u, y*v).
func innerProdEncryption(c *quad.SGPCipher, u, v data.Vector) *quad.SGPCipher {
zeros := make(data.Vector, 2)
zeros[0] = big.NewInt(0)
zeros[1] = big.NewInt(0)
firstG1 := zeros.MulG1()
secondG2 := zeros.MulG2()
for i := 0; i < len(c.AMulG1); i++ {
ui := make(data.Vector, 2)
ui[0] = u[i]
ui[1] = u[i]
tmpG1 := ui.MulVecG1(c.AMulG1[i])
firstG1 = firstG1.Add(tmpG1)
vi := make(data.Vector, 2)
vi[0] = v[i]
vi[1] = v[i]
tmpG2 := vi.MulVecG2(c.BMulG2[i])
secondG2 = secondG2.Add(tmpG2)
}
first := make([]data.VectorG1, 1)
first[0] = firstG1
second := make([]data.VectorG2, 1)
second[0] = secondG2
return quad.NewSGPCipher(c.G1MulGamma, first, second)
}
// projectEncryption accepts the encryption c of (x, y)
// and projection matrix P. It manipulates the encryption
// in order to obtain an encryption of (P*x, P*y).
func projectEncryption(c *quad.SGPCipher, P data.Matrix) *quad.SGPCipher {
n := len(P) // number of vectors in the P matrix
aMulG1 := make([]data.VectorG1, n)
bMulG2 := make([]data.VectorG2, n)
for i := 0; i < n; i++ {
innerC := innerProdEncryption(c, P[i], P[i])
aMulG1[i] = innerC.AMulG1[0]
bMulG2[i] = innerC.BMulG2[0]
}
return quad.NewSGPCipher(c.G1MulGamma, aMulG1, bMulG2)
}
// innerProdSecKey accepts the secret key msk that was used for
// encryption of (x, y), and vectors u, v.
// It manipulates the provided master secret key in order to obtain
// a secret key for encryption of (x*u, y*v).
// Secret key is manipulated with the inner (dot) product operation.
func innerProdSecKey(msk *quad.SGPSecKey, u, v data.Vector) *quad.SGPSecKey {
s := make(data.Vector, 1)
s[0], _ = msk.S.Dot(u)
t := make(data.Vector, 1)
t[0], _ = msk.T.Dot(v)
return quad.NewSGPSecKey(s, t)
}
// projectSecKey accepts the secret key msk that was used for
// encryption of (x, y), and the projection matrix P.
// It manipulates the provided master secret key in order to obtain
// a secret key for encryption of (P*x, P*y).
func projectSecKey(msk *quad.SGPSecKey, P data.Matrix) *quad.SGPSecKey {
n := len(P) // number of vectors in the P matrix
s := make(data.Vector, n)
t := make(data.Vector, n)
for i := 0; i < n; i++ {
secKeyInner := innerProdSecKey(msk, P[i], P[i])
s[i] = secKeyInner.S[0]
t[i] = secKeyInner.T[0]
}
return quad.NewSGPSecKey(s, t)
}
// diagMat takes a vector v and returns a diagonal matrix
// with elements of v on the diagonal.
func diagMat(v data.Vector) data.Matrix {
l := len(v)
mat := make(data.Matrix, l)
for j, vi := range v {
vec := make(data.Vector, l)
for i := 0; i < l; i++ {
vec[i] = big.NewInt(0)
if i == j {
vec[i].Set(vi)
}
}
mat[j] = vec
}
return mat
}