-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinception_v4.py
205 lines (169 loc) · 6.39 KB
/
inception_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import torch.nn as nn
from .ops import blocks
from typing import List, Any
from .utils import export, load_from_local_or_url
def get_stem(in_channels):
return blocks.Stage(
blocks.Conv2dBlock(in_channels, 32, kernel_size=3, stride=2, padding=0),
blocks.Conv2dBlock(32, 32, kernel_size=3, padding=0),
blocks.Conv2dBlock(32, 64, kernel_size=3),
blocks.ConcatBranches(
nn.MaxPool2d(3, stride=2),
blocks.Conv2dBlock(64, 96, kernel_size=3, stride=2, padding=0)
),
blocks.ConcatBranches(
nn.Sequential(
blocks.Conv2d1x1Block(160, 64),
blocks.Conv2dBlock(64, 96, kernel_size=3, padding=0)
),
nn.Sequential(
blocks.Conv2d1x1Block(160, 64),
blocks.Conv2dBlock(64, 64, kernel_size=(7, 1), padding=(3, 0)),
blocks.Conv2dBlock(64, 64, kernel_size=(1, 7), padding=(0, 3)),
blocks.Conv2dBlock(64, 96, kernel_size=3, padding=0)
)
),
blocks.ConcatBranches(
blocks.Conv2dBlock(192, 192, kernel_size=3, stride=2, padding=0),
nn.MaxPool2d(3, stride=2, padding=0)
)
)
class InceptionV4(nn.Module):
r"""
Paper: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, https://arxiv.org/abs/1602.07261
"""
def __init__(
self,
in_channels: int = 3,
num_classes: int = 1000,
dropout_rate: float = 0.0,
drop_path_rate: float = 0.0,
**kwargs: Any
) -> None:
super().__init__()
self.stem = get_stem(in_channels)
self.stage1 = blocks.Stage(
*[blocks.InceptionA(384, 96, [64, 96], [64, 96], 96) for _ in range(4)],
blocks.ReductionA(384, 384, [192, 224, 256]),
)
self.stage2 = blocks.Stage(
*[blocks.InceptionB(1024, 384, [192, 224, 256], [192, 224, 256], 128) for _ in range(7)],
blocks.ReductionB(1024, [192, 192], [256, 320])
)
self.stage3 = blocks.Stage(
*[blocks.InceptionC(1536, 256, [384, 256], [384, 448, 512, 256], 256) for _ in range(3)],
)
self.pool = nn.AdaptiveMaxPool2d((1, 1))
self.classifier = nn.Sequential(
nn.Dropout(dropout_rate, inplace=True),
nn.Linear(1536, num_classes)
)
def forward(self, x):
x = self.stem(x)
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.pool(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
@export
def inception_v4(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs: Any):
model = InceptionV4(**kwargs)
if pretrained:
load_from_local_or_url(model, pth, kwargs.get('url', None), progress)
return model
class InceptionResNetV1(nn.Module):
def __init__(
self,
in_channels: int = 3,
num_classes: int = 1000,
dropout_rate: float = 0.0,
drop_path_rate: float = 0.0,
**kwargs: Any
) -> None:
super().__init__()
self.stem = nn.Sequential(
blocks.Conv2dBlock(in_channels, 32, kernel_size=3, stride=2, padding=0),
blocks.Conv2dBlock(32, 32, kernel_size=3, padding=0),
blocks.Conv2dBlock(32, 64, kernel_size=3),
nn.MaxPool2d(3, stride=2),
blocks.Conv2d1x1Block(64, 80),
blocks.Conv2dBlock(80, 192, kernel_size=3, padding=0),
blocks.Conv2dBlock(192, 256, kernel_size=3, stride=2, padding=0)
)
self.stage1 = blocks.Stage(
*[blocks.InceptionResNetA(256, 32, [32, 32], [32, 32, 32]) for _ in range(5)],
blocks.ReductionA(256, 384, [192, 192, 256])
)
self.stage2 = blocks.Stage(
*[blocks.InceptionResNetB(896, 128, [128, 128, 128]) for _ in range(10)],
blocks.ReductionC(896, [256, 384], [256, 256], [256, 256, 256])
)
self.stage3 = blocks.Stage(
[blocks.InceptionResNetC(1792, 192, [192, 192, 192]) for _ in range(5)],
)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Sequential(
nn.Dropout(dropout_rate, inplace=True),
nn.Linear(1792, num_classes)
)
def forward(self, x):
x = self.stem(x)
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.pool(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
@export
def inception_resnet_v1(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs: Any):
model = InceptionResNetV1(**kwargs)
if pretrained:
load_from_local_or_url(model, pth, kwargs.get('url', None), progress)
return model
class InceptionResNetV2(nn.Module):
def __init__(
self,
in_channels: int = 3,
num_classes: int = 1000,
dropout_rate: float = 0.0,
drop_path_rate: float = 0.0,
**kwargs: Any
) -> None:
super().__init__()
self.stem = get_stem(in_channels)
self.stage1 = blocks.Stage(
*[blocks.InceptionResNetA(384, 32, [32, 32], [32, 48, 64]) for _ in range(10)],
blocks.ReductionA(384, 384, [256, 256, 384])
)
self.stage2 = blocks.Stage(
*[blocks.InceptionResNetB(1152, 192, [128, 160, 192]) for _ in range(20)],
blocks.ReductionC(1152, [256, 384], [256, 288], [256, 288, 320])
)
self.stage3 = blocks.Stage(
*[blocks.InceptionResNetC(2144, 192, [192, 224, 256]) for _ in range(10)],
blocks.Conv2d1x1Block(2144, 1536)
)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Sequential(
nn.Dropout(dropout_rate, inplace=True),
nn.Linear(1536, num_classes)
)
def forward(self, x):
x = self.stem(x)
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.pool(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
@export
def inception_resnet_v2(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs: Any):
model = InceptionResNetV2(**kwargs)
if pretrained:
load_from_local_or_url(model, pth, kwargs.get('url', None), progress)
return model