-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxsha256.go
234 lines (209 loc) · 6.01 KB
/
xsha256.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
package xsha256
// Add modulo 2^32
func addMod32(a, b uint32) uint32 {
return (a + b) & 0xFFFFFFFF
}
// Right rotate
func rotR32(a uint32, shift uint32) uint32 {
return (a >> shift) | (a << (32 - shift))
}
func little_Sigma0(x uint32) uint32 {
return rotR32(x, 7) ^ rotR32(x, 18) ^ (x >> 3)
}
func little_Sigma1(x uint32) uint32 {
return rotR32(x, 17) ^ rotR32(x, 19) ^ (x >> 10)
}
// SHA-256 message block is 64 bytes. So one message block contains 16 words.
// SHA_256 has 64 rounds. First 16 rounds use 16 message words directly.
// Subsequent rounds mix differnt words using a formula.
// Convert 64 bytes into 16 words. Convert in 4 bytes group into integer using big endian.
// For next 48 words using formula:
// words[i] := words[i-16] + little_sigma0(words[i-15]) + words[i-7] + little_sigma1(words[i-2])
func bytesToWords(b []byte) []uint32 {
words := make([]uint32, 64)
for i := 0; i < 16; i++ {
// slice of bytes into uint32
words[i] = uint32(b[i*4+0])<<24 | uint32(b[i*4+1])<<16 | uint32(b[i*4+2])<<8 | uint32(b[i*4+3])
}
for i := 16; i < 64; i++ {
words[i] = words[i-16] + little_Sigma0(words[i-15]) + words[i-7] + little_Sigma1(words[i-2])
}
return words
}
func big_Sigma0(x uint32) uint32 {
return rotR32(x, 2) ^ rotR32(x, 13) ^ rotR32(x, 22)
}
func big_Sigma1(x uint32) uint32 {
return rotR32(x, 6) ^ rotR32(x, 11) ^ rotR32(x, 25)
}
// Each bit is according to the bit from y or z at this index,
// depending on if the bit from x at this index is 1 or 0).
func choice(x, y, z uint32) uint32 {
return (x & y) ^ ((^x) & z)
}
// For each bit index, that result bit is according to the majority
// of the 3 inputs bits for x y and z at this index.
func majority(x, y, z uint32) uint32 {
return (x & y) ^ (x & z) ^ (y & z)
}
type State struct {
list [8]uint32
}
// https://en.wikipedia.org/wiki/SHA-2#Pseudocode
func round(state *State, roundK uint32, word uint32) {
ch := choice(state.list[4], state.list[5], state.list[6])
temp1 := state.list[7] + big_Sigma1(state.list[4]) + ch + roundK + word
maj := majority(state.list[0], state.list[1], state.list[2])
temp2 := big_Sigma0(state.list[0]) + maj
state.list[7] = state.list[6]
state.list[6] = state.list[5]
state.list[5] = state.list[4]
state.list[4] = state.list[3] + temp1
state.list[3] = state.list[2]
state.list[2] = state.list[1]
state.list[1] = state.list[0]
state.list[0] = temp1 + temp2
}
// NOTE: cube roots of the first 64 prime numbers.
var _ROUND_CONSTANT = []uint32{
0x428a2f98,
0x71374491,
0xb5c0fbcf,
0xe9b5dba5,
0x3956c25b,
0x59f111f1,
0x923f82a4,
0xab1c5ed5,
0xd807aa98,
0x12835b01,
0x243185be,
0x550c7dc3,
0x72be5d74,
0x80deb1fe,
0x9bdc06a7,
0xc19bf174,
0xe49b69c1,
0xefbe4786,
0x0fc19dc6,
0x240ca1cc,
0x2de92c6f,
0x4a7484aa,
0x5cb0a9dc,
0x76f988da,
0x983e5152,
0xa831c66d,
0xb00327c8,
0xbf597fc7,
0xc6e00bf3,
0xd5a79147,
0x06ca6351,
0x14292967,
0x27b70a85,
0x2e1b2138,
0x4d2c6dfc,
0x53380d13,
0x650a7354,
0x766a0abb,
0x81c2c92e,
0x92722c85,
0xa2bfe8a1,
0xa81a664b,
0xc24b8b70,
0xc76c51a3,
0xd192e819,
0xd6990624,
0xf40e3585,
0x106aa070,
0x19a4c116,
0x1e376c08,
0x2748774c,
0x34b0bcb5,
0x391c0cb3,
0x4ed8aa4a,
0x5b9cca4f,
0x682e6ff3,
0x748f82ee,
0x78a5636f,
0x84c87814,
0x8cc70208,
0x90befffa,
0xa4506ceb,
0xbef9a3f7,
0xc67178f2,
}
// The mixing loop.
func compress(state *State, block []byte) {
words := bytesToWords(block)
before := State{list: state.list}
for i := 0; i < 64; i++ {
round(state, _ROUND_CONSTANT[i], words[i])
}
// Add the compressed chunk to the current hash value.
state.list[0] = state.list[0] + before.list[0]
state.list[1] = state.list[1] + before.list[1]
state.list[2] = state.list[2] + before.list[2]
state.list[3] = state.list[3] + before.list[3]
state.list[4] = state.list[4] + before.list[4]
state.list[5] = state.list[5] + before.list[5]
state.list[6] = state.list[6] + before.list[6]
state.list[7] = state.list[7] + before.list[7]
}
// Padding scheme:
// Start the padding bitstring with a single 1-bit.
// Append some 0-bits after that. We'll define how many in step 4 below.
// Append the bit-length of the message, encoded as a 64-bit unsigned big-endian number.
// Choose the number of 0-bits for step 2 to be the smallest number such that
// the total bit-length of the message plus the padding is an exact multiple of 512.
//
// Padding scheme, redescribed in terms of bytes:
// Start the padding bytestring with a single 0x80 byte (0b10000000)
// Append some 0x00 bytes after that. We'll define how many in step 4 below.
// Append 8 times the byte-length of the message, encoded as an 8-byte unsigned big-endian number.
// Choose the number of 0x00 bytes for step 2 to be the smallest number
// such that the total byte-length of the message plus the padding is an exact multiple of 64.
func padding(len uint64) []byte {
remainder := (len + 8) % 64
filler := 64 - remainder
zero := filler - 1
padSize := 1 + zero + 8
pad := make([]byte, padSize)
pad[0] = 0x80
len *= 8
pad[padSize-1] = byte(len >> 0)
pad[padSize-2] = byte(len >> 8)
pad[padSize-3] = byte(len >> 16)
pad[padSize-4] = byte(len >> 24)
pad[padSize-5] = byte(len >> 32)
pad[padSize-6] = byte(len >> 40)
pad[padSize-7] = byte(len >> 48)
pad[padSize-8] = byte(len >> 56)
return pad
}
// Initialization vector
var _IV = [8]uint32{
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19,
}
// msg is padded. padded msg is chunked into 64 bytes block.
// block is mixed(compress) with current state.
// The resulting state is used as state for next block mixing.
func Hash(msg []byte) []byte {
pad := padding(uint64(len(msg)))
paddedMsg := append(msg, pad...)
state := &State{list: _IV}
for i := 0; i < len(paddedMsg); i += 64 {
block := paddedMsg[i : i+64]
compress(state, block)
}
hash := make([]byte, 0, 32)
v := [4]byte{}
for i := 0; i < 8; i++ {
// uint32 to array of bytes
v[0] = byte(state.list[i] >> 24)
v[1] = byte(state.list[i] >> 16)
v[2] = byte(state.list[i] >> 8)
v[3] = byte(state.list[i])
hash = append(hash, v[:]...)
}
return hash
}