-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGlobalModel.py
625 lines (446 loc) · 21.5 KB
/
GlobalModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# %% IMPORT PACKAGES + FUNCTIONS
# Data Import
import csv
# Data Transformation
import numpy as np
import pandas as pd
from statistics import mean
from scipy.stats import kendalltau
# Cheminformatics
from rdkit.Chem import PandasTools, Descriptors, rdMolDescriptors, AllChem, RDKFingerprint, MACCSkeys
from rdkit.Chem.MolStandardize import rdMolStandardize
# Machine Learning
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split, KFold
from sklearn.metrics import mean_absolute_error, r2_score
from sklearn.pipeline import make_pipeline
from sklearn.neural_network import MLPRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import RFECV
import lightgbm as lgb
# External Caco-2 Test Set (Ro5, TDC)
from tdc.benchmark_group import admet_group
from tdc import Evaluator
# Calcluate all available RDKit descriptors
def getMolDescriptors(mol, missingVal=None):
res = {}
for nm,fn in Descriptors._descList:
# some of the descriptor fucntions can throw errors if they fail, catch those here:
try:
val = fn(mol)
except:
# print the error message:
import traceback
traceback.print_exc()
# and set the descriptor value to whatever missingVal is
val = missingVal
res[nm] = val
return res
# Calculate 1D descriptors of selected set and split into train/validation set
def select_cmpnd_set(cmpnd_set, flag):
# Choose y (target) data
if var_model == 'Regression':
if var_log == 'log10':
cmpnd_set.replace([np.inf, -np.inf], np.nan, inplace=True) # replace "-inf" by NaN
cmpnd_set.dropna(subset=['log10 Papp AB Passive'], inplace=True) # Drop NaN rows
y = cmpnd_set['log10 Papp AB Passive']
elif var_log == 'log10cms':
cmpnd_set.replace([np.inf, -np.inf], np.nan, inplace=True) # replace "-inf" by NaN
cmpnd_set.dropna(subset=['log10 cm/s Papp,Passive'], inplace=True) # Drop NaN rows
y = cmpnd_set['log10 cm/s Papp,Passive']
else: # nm/s
y = cmpnd_set['Papp Passive [nm/s]']
elif var_model == 'Classification':
cmpnd_set['Papp Passive Category'] = cmpnd_set.apply(label_permeability, axis=1) # Label category
if var_log == 'log10':
y = cmpnd_set['Papp Passive Category']
else:
y = cmpnd_set['Papp Passive Category']
# ECFP6 fingerprint (control)
if flag == 'FP':
X, FP = calc_1D_descriptors(cmpnd_set)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state=94)
return X_train, X_test, y_train, y_test, X, FP
# RDKit fingerprint
elif flag == 'FP_RDKit':
X, FP = calc_1D_descriptors(cmpnd_set)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state=94)
return X_train, X_test, y_train, y_test, X, FP
elif flag == 'MACCS':
X, FP = calc_1D_descriptors(cmpnd_set)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state=94)
return X_train, X_test, y_train, y_test, X, FP
# Imported, pre-calcualted PaDEL descriptors
elif flag == 'PaDEL':
X = pd.read_csv('') # Local path to precomputed PaDEL descriptors removed
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state=94)
return X_train, X_test, y_train, y_test
# All available RDKit descriptors
elif flag == '0D_RDKit':
# Calculate RDKit descriptors for full data to allow export and extraction
All_0D_RDKit = [getMolDescriptors(m) for m in df_imp_FULL['Molecule STD']]
X = pd.DataFrame(All_0D_RDKit) # Full dataframe
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state=94)
return X_train, X_test, y_train, y_test
elif flag == 'CDDD':
unique_smiles = cmpnd_set['Structure STD']
cddd_server = CDDDRequest(port=) # Port to Bayer internal CDDD API removed
X = pd.DataFrame(cddd_server.smiles_to_cddd(list(unique_smiles),preprocess=False)) # Convert smiles to CDDD descriptor
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=94)
return X_train, X_test, y_train, y_test
# Label Papp Passive Category
def label_permeability(row):
if row['Papp Passive [nm/s]'] < 10:
return 'Low'
elif 10 <= row['Papp Passive [nm/s]'] <= 70:
return 'Medium'
else:
return 'High'
# Calculation of 1D fingerprint descriptors
def calc_1D_descriptors(dataframe):
if var_descriptor_set == 'FP': # ECFP (Circular)
# Parameters
radius = 1 # Std: 2
nBits = 1024 # Std: 1024
# Loop all Molecules
ECFP6 = [AllChem.GetMorganFingerprintAsBitVect(x, radius, nBits) for x in dataframe['Molecule STD']]
# Create DF with Index and Fingerprints
ecfp6_name = [f'Bit_{i}' for i in range(nBits)]
ecfp6_bits = [list(l) for l in ECFP6]
df_ECFP6 = pd.DataFrame(ecfp6_bits, index = dataframe.index, columns=ecfp6_name)
df_ECFP6.head(1) # Show First Entry of Bit Output
return df_ECFP6, ECFP6
elif var_descriptor_set == 'FP_RDKit': # RDKit (Topological)
# Parameters
length = 5
nBits = 1024
fpgen = AllChem.GetRDKitFPGenerator(maxPath=length, fpSize=nBits)
RDKitFP = [fpgen.GetFingerprint(x) for x in dataframe['Molecule STD']]
RDKitFP_name = [f'Bit_{i}' for i in range(nBits)]
RDKitFP_bits = [list(l) for l in RDKitFP]
df_RDKitFP = pd.DataFrame(RDKitFP_bits, index = dataframe.index, columns=RDKitFP_name)
return df_RDKitFP, RDKitFP_bits
elif var_descriptor_set == 'MACCS': # MACCS (Structural):
MACCS_Keys = [rdMolDescriptors.GetMACCSKeysFingerprint(x) for x in dataframe['Molecule STD']]
MACCS_bits = [list(l) for l in MACCS_Keys]
df_MACCS_Keys = pd.DataFrame(MACCS_bits, index = dataframe.index)
return df_MACCS_Keys, MACCS_bits
# Calculation of 1D fingerprint descriptors for TDC benchmark
def calc_1D_descriptors_Benchmark(dataframe):
# Add moelcules object
PandasTools.AddMoleculeColumnToFrame(dataframe,'Drug','Molecule',includeFingerprints=True)
PandasTools.RemoveSaltsFromFrame(dataframe, molCol='Molecule')
if var_Benchmark_Descriptor == "ECFP":
# Parameters
radius = 3
nBits = 2048
# Loop all Molecules
ECFP6 = [AllChem.GetMorganFingerprintAsBitVect(x, radius, nBits) for x in dataframe['Molecule']]
# Create DF with Index and Fingerprints
ecfp6_name = [f'Bit_{i}' for i in range(nBits)]
ecfp6_bits = [list(l) for l in ECFP6]
df = pd.DataFrame(ecfp6_bits, index = dataframe.index, columns=ecfp6_name)
elif var_Benchmark_Descriptor == "RDKit209":
All_0D_RDKit = [getMolDescriptors(m) for m in dataframe['Molecule']]
df = pd.DataFrame(All_0D_RDKit) # Full dataframe
elif var_Benchmark_Descriptor == "CDDD":
unique_smiles = dataframe['Drug']
cddd_server = CDDDRequest(port=) # Port for Bayer internal CDDD API removed
df = pd.DataFrame(cddd_server.smiles_to_cddd(list(unique_smiles),preprocess=False))
return df
# %% CALCULATE SELECTED DESCRIPTORS AND AUTOMATIC TRAIN TEST SPLIT ##
#####################################################################
## Choose descriptor ('FP', 'PhysChem')
## Choose data transformation ('log10', 'log10cms, '')
## Choose classification/regression y data
var_df_compounds = df_imp_FULL # df_imp_Full is dataframe with Caco-2 data and molecular structures
var_descriptor_set = 'FP' # FP, PaDEL, FP_RDKit, MACCS, 0D_RDKit, CDDD
var_log = 'log10cms' # log10, '', log10cms
var_model = 'Regression' # Regression, Classification
##########################################################################
if var_descriptor_set == 'FP':
X_train, X_test, y_train, y_test, df_ECFP6, lst_ECFP6 = select_cmpnd_set(var_df_compounds, 'FP')
elif var_descriptor_set == 'FP_RDKit':
X_train, X_test, y_train, y_test, df_RDKIT_FP, lst_RDKIT_FP = select_cmpnd_set(var_df_compounds, 'FP_RDKit')
elif var_descriptor_set == 'MACCS':
X_train, X_test, y_train, y_test, df_MACCS_keys, lst_MACCS_keys = select_cmpnd_set(var_df_compounds, 'MACCS')
elif var_descriptor_set == 'CDDD':
X_train, X_test, y_train, y_test = select_cmpnd_set(var_df_compounds, 'CDDD')
elif var_descriptor_set == 'PaDEL':
X_train, X_test, y_train, y_test = select_cmpnd_set(var_df_compounds, 'PaDEL')
elif var_descriptor_set == '0D_RDKit':
X_train, X_test, y_train, y_test = select_cmpnd_set(var_df_compounds, '0D_RDKit')
# %% SVM REGRESSOR ##
#####################
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Configure SVM
# regr_SVM_rbf = SVR(kernel="poly", C=100, gamma="auto", degree=3, epsilon=0.1, coef0=1) # 4 h execution duration
# regr_SVM_rbf = SVR(kernel="rbf") # 0.5 h duration
regr_SVM_rbf = SVR(kernel='rbf') #
# Fit
regr_SVM_rbf.fit(X_train_scaled, y_train)
# Predict
y_pred = regr_SVM_rbf.predict(X_test_scaled)
# %% MLP REGRESSOR ##
#####################
# Standard scale data
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Configure MLP
regr_MLP = MLPRegressor(random_state=1,
max_iter=1000,
verbose=2,
hidden_layer_sizes = (1024), # 1024, 600
early_stopping=True)
# Train MLP
regr_MLP.fit(X_train, y_train)
# Predict MLP
y_pred = regr_MLP.predict(X_test)
# %% LIGHTGBM REGRESSION MODEL (INTERNAL TEST SET) ##
####################################################
# Configure LightGBM
params = {
'boosting': 'gbdt',
'objective': 'regression',
'num_leaves': 35,
'n_estimators' : 2000,
'learning_rate': 0.05,
'metric': {'l1','l2'},
'verbose': -1,
'n_jobs' : 8
}
# Train (and cross-validate if wanted) LightGBM
lgb_train = lgb.Dataset(X_train, y_train)
# lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
rgr_LightGBM = lgb.train(params,
train_set=lgb_train) # ,valid_sets=lgb_eval)
cv_mod = lgb.cv(params,
lgb_train,
500,
nfold = 10,
stratified = False)
# Convert to CV result table
df_CV_LightGBM = pd.DataFrame.from_dict(cv_mod, orient='index').T
df_CV_LightGBM = df_CV_LightGBM.rename(columns={"valid l1-mean": "Mean MAE",
"valid l1-stdv": "MAE SD",
"valid l2-mean": "Mean RMSE",
"valid l2-stdv": "RMSE SD"})
# Print CV results
print("Overall Mean MAE after 10-fold CV: ", np.mean(df_CV_LightGBM['Mean MAE']))
print("Overall Mean MAE SD after 10-fold CV: ", np.mean(df_CV_LightGBM['MAE SD']))
print("Overall Mean RMSE after 10-fold CV: ", np.sqrt(np.mean(df_CV_LightGBM['Mean RMSE'])))
print("Overall Mean RMSE SD after 10-fold CV: ", np.sqrt(np.mean(df_CV_LightGBM['RMSE SD'])))
# Prediction for test set
y_pred = rgr_LightGBM.predict(X_test)
# %% TDC EXTERNAL TEST BENCHMARK ##
###################################
##########################
### CHANGE VALUES HERE ###
##########################
var_Benchmark_Regressor = 'LightGBM' # MLP LightGBM SVM
var_Benchmark_Train = 'external' # external internal
var_Benchmark_Descriptor = 'RDKit209' # ECFP RDKit209 CDDD
var_log = 'log10cms' # nm/s log
######################################################
# Import TDC data
group = admet_group(path = 'data/')
predictions_list = []
for seed in [1, 2, 3, 4, 5]:
benchmark = group.get('Caco2_Wang')
## all benchmark names in a benchmark group are stored in group.dataset_names
predictions = {}
name = benchmark['name']
train_val, test = benchmark['train_val'], benchmark['test']
train, valid = group.get_train_valid_split(benchmark = name, split_type = 'default', seed = seed)
Benchmark_TrainVal = calc_1D_descriptors_Benchmark(train_val)
Benchmark_Test = calc_1D_descriptors_Benchmark(test)
## Data conversion (log, non-log)
if var_log == 'nm/s':
test['Y'] = np.power(10, test['Y']) # De-log
test['Y'] = test['Y'].mul(10**7) # Convert cm/s to nm/s
train_val['Y'] = np.power(10, train_val['Y']) # De-log
train_val['Y'] = train_val['Y'].mul(10**7) # Convert cm/s to nm/s
elif var_log == 'log': # Only affects internal data
y_test = y_test * 10**-7 # Convert non-log nm/s to log cm/s
y_train = y_train * 10**-7 # Convert non-log nm/s to log cm/s
## Model selection
if var_Benchmark_Regressor == 'LightGBM':
# LightGBM Parameters
params = {
'boosting': 'gbdt',
'objective': 'regression',
'num_leaves': 35,
'n_estimators' : 2000,
'learning_rate': 0.05,
'metric': {'l1','l2'},
'verbose': -1}
## Training data selection
if var_Benchmark_Train == 'external':
lgb_train = lgb.Dataset(Benchmark_TrainVal, train_val['Y'])
lgb_eval = lgb.Dataset(Benchmark_Test, test['Y'], reference=lgb_train)
elif var_Benchmark_Train == 'internal':
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
var_regr = lgb.train(params,
train_set=lgb_train) # ,valid_sets=lgb_eval)
elif var_Benchmark_Regressor == 'MLP':
from sklearn.neural_network import MLPRegressor
var_regr = MLPRegressor(random_state=1, max_iter=1000, verbose=2,
hidden_layer_sizes = (600, 2048), early_stopping=True)
if var_Benchmark_Train == 'external':
var_regr.fit(Benchmark_TrainVal, train_val['Y'])
elif var_Benchmark_Train == 'internal':
var_regr.fit(X_train, y_train)
elif var_Benchmark_Regressor == 'SVM':
from sklearn.svm import SVR
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
var_regr = make_pipeline(StandardScaler(),
SVR(kernel="linear", C=1, gamma=0.1, epsilon=0.1, verbose=1))
if var_Benchmark_Train == 'external':
var_regr.fit(Benchmark_TrainVal, train_val['Y'])
elif var_Benchmark_Train == 'internal':
var_regr.fit(X_train, y_train)
## Predict for Test Set
y_pred_test = var_regr.predict(Benchmark_Test)
predictions[name] = y_pred_test
predictions_list.append(predictions)
results = group.evaluate_many(predictions_list)
print(results)
# Evaluation
lst_metrices = ['MSE','MAE', 'RMSE', "R2", "PCC", "Spearman"]
for i in lst_metrices:
evaluator = Evaluator(name = i)
score = evaluator(test['Y'], y_pred_test)
print(i, score)
# %% RECURSIVE FEATURE ELIMINATION WITH LIGHTGBM ##
###################################################
X_full = pd.concat([X_train, X_test])
y_full = pd.concat([y_train, y_test])
min_features_to_select = 1 # Minimum number of features to consider
# Configure LightGBM for RCFECV
rgr = lgb.LGBMRegressor(boosting_type='gbdt',
objective='regression',
num_leaves=35,
n_estimators=2000,
learning_rate=0.05,
n_jobs=8)
# Configure cross-validation for RFE
cv = KFold(5)
# Configure recurssive feature elimination (RFE)
rfecv = RFECV(
estimator=rgr,
step=1,
cv=cv,
scoring="neg_mean_absolute_error",
min_features_to_select=min_features_to_select,
n_jobs=8,
)
# Fit RFE
rfecv.fit(X_full, y_full)
# Output RFE fit results
print(f"Optimal number of features: {rfecv.n_features_}")
# %% LightGBM Classification Model ##
######################################
# Configure LGBM classifier
clf_LightGBM = lgb.LGBMClassifier(boosting_type= 'gbdt',
device = 'gpu',
objective = 'multiclass',
max_depth= 0,
num_leaves = 35,
learning_rate = 0.05,
n_estimators= 2000,
class_weight= 'balanced',
n_jobs= 8)
# Fit LGBM classifier
clf_LightGBM.fit(X_train, y_train)
# Predict with LGBM classifier
y_pred = clf_LightGBM.predict(X_test)
# %% 10-Fold Cross-Validation ##
################################
# Standardscale
'''
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
'''
# Combine Train + Test for Full Data
X = pd.concat([X_test, X_train])
y = pd.concat([y_test, y_train])
# Reset Index
X = X.reset_index(drop=True)
Y = y.reset_index(drop=True)
# Setup 10-Fold CV mit Mean MAE + SD Calculation
kf = KFold(n_splits=10)
# MLP Parameter
regr_MLP = MLPRegressor(random_state=1,
max_iter=1000,
verbose=2,
hidden_layer_sizes = (600), # Deep: 1024, 600 Shallow: 600
early_stopping=True)
# LightGBM Parameter
params = {
'boosting': 'gbdt',
'objective': 'regression',
'num_leaves': 35,
'n_estimators' : 2000,
'learning_rate': 0.05,
'metric': {'l1','l2'},
'verbose': -1,
'n_jobs' : 8}
# SVM Parameter
# regr_SVM_rbf = SVR(kernel='rbf')
regr_SVM_poly = SVR(kernel='poly')
lst_MAEs_10CV = []
lst_R2s_10CV = []
lst_Taus_10CV = []
for i, (train_index, test_index) in enumerate(kf.split(X)):
print(f"Fold {i}:")
print(f" Train: index={train_index}")
print(f" Test: index={test_index}")
#########################################################
# REMOVE/ADD COMMENTS BELOW TO SELECT APPLICABLE MODELS #
#########################################################
'''
# Fit MLP ########################################################
# regr_MLP.fit(X.iloc[train_index], y.iloc[train_index])
# y_pred = regr_MLP.predict(X.iloc[test_index])
##################################################################
# Fit LightGBM ###################################################
lgb_train = lgb.Dataset(X.iloc[train_index], y.iloc[train_index])
rgr_LightGBM = lgb.train(params,
train_set=lgb_train) # ,valid_sets=lgb_eval)
# Prediction for test set
y_pred = rgr_LightGBM.predict(X.iloc[test_index])
##################################################################
# Fit RBF SVM ####################################################
regr_SVM_rbf.fit(X.iloc[train_index], y.iloc[train_index])
# Predict
y_pred = regr_SVM_rbf.predict(X.iloc[test_index])
'''
# Fit Poly SVM ###################################################
regr_SVM_poly.fit(X.iloc[train_index], y.iloc[train_index])
# Predict
y_pred = regr_SVM_poly.predict(X.iloc[test_index])
##################################################################
# Collect Metrics
lst_MAEs_10CV.append(round(mean_absolute_error(y.iloc[test_index], y_pred), 3))
lst_R2s_10CV.append(round(r2_score(y.iloc[test_index], y_pred), 3))
lst_Taus_10CV.append(kendalltau(y.iloc[test_index], y_pred))
# Extract Kendall-Tau Results
for i in range(0,len(lst_Taus_10CV)):
lst_Taus_10CV[i] = round(lst_Taus_10CV[i].statistic, 3)
# Combine collected Metrics
df_10CV_Metrics = pd.DataFrame(data = {'MAE (10 CV)': lst_MAEs_10CV,
'R2 (10 CV)': lst_R2s_10CV,
'K-Tau (10 CV)': lst_Taus_10CV})
# Calculate Mean and SD for Metrics
df_10CV_Metrics_Means_SDs = {'MAE (Mean 10 CV)': round(mean(lst_MAEs_10CV), 3),
'MAE (SD 10 CV)' : round(np.std(lst_MAEs_10CV), 3),
'K-Tau (Mean 10 CV)': round(mean(lst_Taus_10CV), 3),
'K-Tau (SD 10 CV)': round(np.std(lst_Taus_10CV), 3),
'R2 (Mean 10 CV)': round(mean(lst_R2s_10CV), 3),
'R2 (SD 10 CV)' : round(np.std(lst_R2s_10CV), 3)}