-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathinference.py
116 lines (89 loc) · 3.58 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from model import DocScanner
from seg import U2NETP
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import cv2
import os
from PIL import Image
import argparse
import warnings
warnings.filterwarnings('ignore')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.msk = U2NETP(3, 1)
self.bm = DocScanner() # 矫正
def forward(self, x):
msk, _1,_2,_3,_4,_5,_6 = self.msk(x)
msk = (msk > 0.5).float()
x = msk * x
bm = self.bm(x, iters=12, test_mode=True)
bm = (2 * (bm / 286.8) - 1) * 0.99
return bm
def reload_seg_model(model, path=""):
if not bool(path):
return model
else:
model_dict = model.state_dict()
pretrained_dict = torch.load(path, map_location='cuda:0')
pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model
def reload_rec_model(model, path=""):
if not bool(path):
return model
else:
model_dict = model.state_dict()
pretrained_dict = torch.load(path, map_location='cuda:0')
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model
def rec(seg_model_path, rec_model_path, distorrted_path, save_path):
# distorted images list
img_list = os.listdir(distorrted_path)
# creat save path for rectified images
if not os.path.exists(save_path):
os.makedirs(save_path)
# net init
net = Net().cuda()
# reload seg model
reload_seg_model(net.msk, seg_model_path)
# reload rec model
reload_rec_model(net.bm, rec_model_path)
net.eval()
for img_path in img_list:
name = img_path.split('.')[-2] # image name
img_path = distorrted_path + img_path # image path
im_ori = np.array(Image.open(img_path))[:, :, :3] / 255.
h, w, _ = im_ori.shape
im = cv2.resize(im_ori, (288, 288))
im = im.transpose(2, 0, 1)
im = torch.from_numpy(im).float().unsqueeze(0)
with torch.no_grad():
bm = net(im.cuda())
bm = bm.cpu()
# save rectified image
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow
bm0 = cv2.blur(bm0, (3, 3))
bm1 = cv2.blur(bm1, (3, 3))
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2
out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True)
cv2.imwrite(save_path + name + '_rec' + '.png', (((out[0]*255).permute(1, 2, 0).numpy())[:,:,::-1]).astype(np.uint8))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--seg_model_path', default='./model_pretrained/seg.pth')
parser.add_argument('--rec_model_path', default='./model_pretrained/DocScanner-L.pth')
parser.add_argument('--distorrted_path', default='./distorted/')
parser.add_argument('--rectified_path', default='./rectified/')
opt = parser.parse_args()
rec(seg_model_path=opt.seg_model_path,
rec_model_path=opt.rec_model_path,
distorrted_path=opt.distorrted_path,
save_path=opt.rectified_path)
if __name__ == "__main__":
main()