forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_export_modes.py
149 lines (128 loc) · 4.38 KB
/
test_export_modes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Owner(s): ["module: onnx"]
import io
import os
import shutil
import sys
import tempfile
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.onnx import OperatorExportTypes
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
import pytorch_test_common
from torch.testing._internal import common_utils
# Smoke tests for export methods
class TestExportModes(pytorch_test_common.ExportTestCase):
class MyModel(nn.Module):
def __init__(self):
super(TestExportModes.MyModel, self).__init__()
def forward(self, x):
return x.transpose(0, 1)
def test_protobuf(self):
torch_model = TestExportModes.MyModel()
fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True)
f = io.BytesIO()
torch.onnx._export(
torch_model,
(fake_input),
f,
verbose=False,
export_type=torch.onnx.ExportTypes.PROTOBUF_FILE,
)
def test_zipfile(self):
torch_model = TestExportModes.MyModel()
fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True)
f = io.BytesIO()
torch.onnx._export(
torch_model,
(fake_input),
f,
verbose=False,
export_type=torch.onnx.ExportTypes.ZIP_ARCHIVE,
)
def test_compressed_zipfile(self):
torch_model = TestExportModes.MyModel()
fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True)
f = io.BytesIO()
torch.onnx._export(
torch_model,
(fake_input),
f,
verbose=False,
export_type=torch.onnx.ExportTypes.COMPRESSED_ZIP_ARCHIVE,
)
def test_directory(self):
torch_model = TestExportModes.MyModel()
fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True)
d = tempfile.mkdtemp()
torch.onnx._export(
torch_model,
(fake_input),
d,
verbose=False,
export_type=torch.onnx.ExportTypes.DIRECTORY,
)
shutil.rmtree(d)
def test_onnx_multiple_return(self):
@torch.jit.script
def foo(a):
return (a, a)
f = io.BytesIO()
x = torch.ones(3)
torch.onnx.export(foo, (x,), f)
@common_utils.skipIfNoCaffe2
@common_utils.skipIfNoLapack
def test_caffe2_aten_fallback(self):
class ModelWithAtenNotONNXOp(nn.Module):
def forward(self, x, y):
abcd = x + y
defg = torch.linalg.qr(abcd)
return defg
x = torch.rand(3, 4)
y = torch.rand(3, 4)
torch.onnx.export_to_pretty_string(
ModelWithAtenNotONNXOp(),
(x, y),
add_node_names=False,
do_constant_folding=False,
operator_export_type=OperatorExportTypes.ONNX_ATEN_FALLBACK,
)
@common_utils.skipIfCaffe2
@common_utils.skipIfNoLapack
def test_aten_fallback(self):
class ModelWithAtenNotONNXOp(nn.Module):
def forward(self, x, y):
abcd = x + y
defg = torch.linalg.qr(abcd)
return defg
x = torch.rand(3, 4)
y = torch.rand(3, 4)
torch.onnx.export_to_pretty_string(
ModelWithAtenNotONNXOp(),
(x, y),
add_node_names=False,
do_constant_folding=False,
operator_export_type=OperatorExportTypes.ONNX_ATEN_FALLBACK,
# support for linalg.qr was added in later op set versions.
opset_version=9,
)
# torch.fmod is using to test ONNX_ATEN.
# If you plan to remove fmod from aten, or found this test failed.
# please contact @Rui.
def test_onnx_aten(self):
class ModelWithAtenFmod(nn.Module):
def forward(self, x, y):
return torch.fmod(x, y)
x = torch.randn(3, 4, dtype=torch.float32)
y = torch.randn(3, 4, dtype=torch.float32)
torch.onnx.export_to_pretty_string(
ModelWithAtenFmod(),
(x, y),
add_node_names=False,
do_constant_folding=False,
operator_export_type=OperatorExportTypes.ONNX_ATEN,
)
if __name__ == "__main__":
common_utils.run_tests()