forked from rasbt/python-machine-learning-book-3rd-edition
-
Notifications
You must be signed in to change notification settings - Fork 2
/
ch15_part1.py
517 lines (288 loc) · 10.3 KB
/
ch15_part1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# coding: utf-8
import tensorflow as tf
import numpy as np
import scipy.signal
import imageio
from tensorflow import keras
import tensorflow_datasets as tfds
import pandas as pd
import matplotlib.pyplot as plt
import os
from distutils.version import LooseVersion as Version
# *Python Machine Learning 3rd Edition* by [Sebastian Raschka](https://sebastianraschka.com) & [Vahid Mirjalili](http://vahidmirjalili.com), Packt Publishing Ltd. 2019
#
# Code Repository: https://github.com/rasbt/python-machine-learning-book-3rd-edition
#
# Code License: [MIT License](https://github.com/rasbt/python-machine-learning-book-3rd-edition/blob/master/LICENSE.txt)
# # Chapter 15: Classifying Images with Deep Convolutional Neural Networks (Part 1/2)
# Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s).
# ## The building blocks of convolutional neural networks
#
# ### Understanding CNNs and feature hierarchies
#
#
# ### Performing discrete convolutions
#
# ### Discrete convolutions in one dimension
#
#
# ### Padding inputs to control the size of the output feature maps
#
#
# ### Determining the size of the convolution output
print('TensorFlow version:', tf.__version__)
print('NumPy version: ', np.__version__)
def conv1d(x, w, p=0, s=1):
w_rot = np.array(w[::-1])
x_padded = np.array(x)
if p > 0:
zero_pad = np.zeros(shape=p)
x_padded = np.concatenate(
[zero_pad, x_padded, zero_pad])
res = []
for i in range(0, int((len(x_padded) - len(w_rot)) / s) + 1, s):
res.append(np.sum(
x_padded[i:i+w_rot.shape[0]] * w_rot))
return np.array(res)
## Testing:
x = [1, 3, 2, 4, 5, 6, 1, 3]
w = [1, 0, 3, 1, 2]
print('Conv1d Implementation:',
conv1d(x, w, p=2, s=1))
print('Numpy Results:',
np.convolve(x, w, mode='same'))
# ### Performing a discrete convolution in 2D
def conv2d(X, W, p=(0, 0), s=(1, 1)):
W_rot = np.array(W)[::-1,::-1]
X_orig = np.array(X)
n1 = X_orig.shape[0] + 2*p[0]
n2 = X_orig.shape[1] + 2*p[1]
X_padded = np.zeros(shape=(n1, n2))
X_padded[p[0]:p[0]+X_orig.shape[0],
p[1]:p[1]+X_orig.shape[1]] = X_orig
res = []
for i in range(0, int((X_padded.shape[0] -
W_rot.shape[0])/s[0])+1, s[0]):
res.append([])
for j in range(0, int((X_padded.shape[1] -
W_rot.shape[1])/s[1])+1, s[1]):
X_sub = X_padded[i:i+W_rot.shape[0],
j:j+W_rot.shape[1]]
res[-1].append(np.sum(X_sub * W_rot))
return(np.array(res))
X = [[1, 3, 2, 4], [5, 6, 1, 3], [1, 2, 0, 2], [3, 4, 3, 2]]
W = [[1, 0, 3], [1, 2, 1], [0, 1, 1]]
print('Conv2d Implementation:\n',
conv2d(X, W, p=(1, 1), s=(1, 1)))
print('SciPy Results:\n',
scipy.signal.convolve2d(X, W, mode='same'))
# ## Subsampling layers
# ## Putting everything together – implementing a CNN
#
# ### Working with multiple input or color channels
#
#
# **TIP: Reading an image file**
img_raw = tf.io.read_file('example-image.png')
img = tf.image.decode_image(img_raw)
print('Image shape:', img.shape)
print('Number of channels:', img.shape[2])
print('Image data type:', img.dtype)
print(img[100:102, 100:102, :])
img = imageio.imread('example-image.png')
print('Image shape:', img.shape)
print('Number of channels:', img.shape[2])
print('Image data type:', img.dtype)
print(img[100:102, 100:102, :])
# **INFO-BOX: The rank of a grayscale image for input to a CNN**
img_raw = tf.io.read_file('example-image-gray.png')
img = tf.image.decode_image(img_raw)
tf.print('Rank:', tf.rank(img))
tf.print('Shape:', img.shape)
img = imageio.imread('example-image-gray.png')
tf.print('Rank:', tf.rank(img))
tf.print('Shape:', img.shape)
img_reshaped = tf.reshape(img, (img.shape[0], img.shape[1], 1))
tf.print('New Shape:', img_reshaped.shape)
# ## Regularizing a neural network with dropout
#
#
conv_layer = keras.layers.Conv2D(
filters=16, kernel_size=(3, 3),
kernel_regularizer=keras.regularizers.l2(0.001))
fc_layer = keras.layers.Dense(
units=16, kernel_regularizer=keras.regularizers.l2(0.001))
# ## Loss Functions for Classification
#
# * **`BinaryCrossentropy()`**
# * `from_logits=False`
# * `from_logits=True`
#
# * **`CategoricalCrossentropy()`**
# * `from_logits=False`
# * `from_logits=True`
#
# * **`SparseCategoricalCrossentropy()`**
# * `from_logits=False`
# * `from_logits=True`
#
####### Binary Crossentropy
bce_probas = tf.keras.losses.BinaryCrossentropy(from_logits=False)
bce_logits = tf.keras.losses.BinaryCrossentropy(from_logits=True)
logits = tf.constant([0.8])
probas = tf.keras.activations.sigmoid(logits)
tf.print(
'BCE (w Probas): {:.4f}'.format(
bce_probas(y_true=[1], y_pred=probas)),
'(w Logits): {:.4f}'.format(
bce_logits(y_true=[1], y_pred=logits)))
####### Categorical Crossentropy
cce_probas = tf.keras.losses.CategoricalCrossentropy(
from_logits=False)
cce_logits = tf.keras.losses.CategoricalCrossentropy(
from_logits=True)
logits = tf.constant([[1.5, 0.8, 2.1]])
probas = tf.keras.activations.softmax(logits)
if Version(tf.__version__) >= '2.3.0':
tf.print(
'CCE (w Probas): {:.4f}'.format(
cce_probas(y_true=[[0, 0, 1]], y_pred=probas)),
'(w Logits): {:.4f}'.format(
cce_logits(y_true=[[0, 0, 1]], y_pred=logits)))
else:
tf.print(
'CCE (w Probas): {:.4f}'.format(
cce_probas(y_true=[0, 0, 1], y_pred=probas)),
'(w Logits): {:.4f}'.format(
cce_logits(y_true=[0, 0, 1], y_pred=logits)))
####### Sparse Categorical Crossentropy
sp_cce_probas = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=False)
sp_cce_logits = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True)
tf.print(
'Sparse CCE (w Probas): {:.4f}'.format(
sp_cce_probas(y_true=[2], y_pred=probas)),
'(w Logits): {:.4f}'.format(
sp_cce_logits(y_true=[2], y_pred=logits)))
# ## Implementing a deep convolutional neural network using TensorFlow
#
# ### The multilayer CNN architecture
# ### Loading and preprocessing the data
## MNIST dataset
mnist_bldr = tfds.builder('mnist')
mnist_bldr.download_and_prepare()
datasets = mnist_bldr.as_dataset(shuffle_files=False)
print(datasets.keys())
mnist_train_orig, mnist_test_orig = datasets['train'], datasets['test']
BUFFER_SIZE = 10000
BATCH_SIZE = 64
NUM_EPOCHS = 20
mnist_train = mnist_train_orig.map(
lambda item: (tf.cast(item['image'], tf.float32)/255.0,
tf.cast(item['label'], tf.int32)))
mnist_test = mnist_test_orig.map(
lambda item: (tf.cast(item['image'], tf.float32)/255.0,
tf.cast(item['label'], tf.int32)))
tf.random.set_seed(1)
mnist_train = mnist_train.shuffle(buffer_size=BUFFER_SIZE,
reshuffle_each_iteration=False)
mnist_valid = mnist_train.take(10000).batch(BATCH_SIZE)
mnist_train = mnist_train.skip(10000).batch(BATCH_SIZE)
# ### Implementing a CNN using the TensorFlow Keras API
#
# #### Configuring CNN layers in Keras
#
# * **Conv2D:** `tf.keras.layers.Conv2D`
# * `filters`
# * `kernel_size`
# * `strides`
# * `padding`
#
#
# * **MaxPool2D:** `tf.keras.layers.MaxPool2D`
# * `pool_size`
# * `strides`
# * `padding`
#
#
# * **Dropout** `tf.keras.layers.Dropout2D`
# * `rate`
# ### Constructing a CNN in Keras
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(
filters=32, kernel_size=(5, 5),
strides=(1, 1), padding='same',
data_format='channels_last',
name='conv_1', activation='relu'))
model.add(tf.keras.layers.MaxPool2D(
pool_size=(2, 2), name='pool_1'))
model.add(tf.keras.layers.Conv2D(
filters=64, kernel_size=(5, 5),
strides=(1, 1), padding='same',
name='conv_2', activation='relu'))
model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2), name='pool_2'))
model.compute_output_shape(input_shape=(16, 28, 28, 1))
model.add(tf.keras.layers.Flatten())
model.compute_output_shape(input_shape=(16, 28, 28, 1))
model.add(tf.keras.layers.Dense(
units=1024, name='fc_1',
activation='relu'))
model.add(tf.keras.layers.Dropout(
rate=0.5))
model.add(tf.keras.layers.Dense(
units=10, name='fc_2',
activation='softmax'))
tf.random.set_seed(1)
model.build(input_shape=(None, 28, 28, 1))
model.compute_output_shape(input_shape=(16, 28, 28, 1))
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy']) # same as `tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy')`
history = model.fit(mnist_train, epochs=NUM_EPOCHS,
validation_data=mnist_valid,
shuffle=True)
hist = history.history
x_arr = np.arange(len(hist['loss'])) + 1
fig = plt.figure(figsize=(12, 4))
ax = fig.add_subplot(1, 2, 1)
ax.plot(x_arr, hist['loss'], '-o', label='Train loss')
ax.plot(x_arr, hist['val_loss'], '--<', label='Validation loss')
ax.set_xlabel('Epoch', size=15)
ax.set_ylabel('Loss', size=15)
ax.legend(fontsize=15)
ax = fig.add_subplot(1, 2, 2)
ax.plot(x_arr, hist['accuracy'], '-o', label='Train acc.')
ax.plot(x_arr, hist['val_accuracy'], '--<', label='Validation acc.')
ax.legend(fontsize=15)
ax.set_xlabel('Epoch', size=15)
ax.set_ylabel('Accuracy', size=15)
#plt.savefig('figures/15_12.png', dpi=300)
plt.show()
test_results = model.evaluate(mnist_test.batch(20))
print('\nTest Acc. {:.2f}%'.format(test_results[1]*100))
batch_test = next(iter(mnist_test.batch(12)))
preds = model(batch_test[0])
tf.print(preds.shape)
preds = tf.argmax(preds, axis=1)
print(preds)
fig = plt.figure(figsize=(12, 4))
for i in range(12):
ax = fig.add_subplot(2, 6, i+1)
ax.set_xticks([]); ax.set_yticks([])
img = batch_test[0][i, :, :, 0]
ax.imshow(img, cmap='gray_r')
ax.text(0.9, 0.1, '{}'.format(preds[i]),
size=15, color='blue',
horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
#plt.savefig('figures/15_13.png', dpi=300)
plt.show()
if not os.path.exists('models'):
os.mkdir('models')
model.save('models/mnist-cnn.h5')
# ----
#
# Readers may ignore the next cell.