Skip to content

Latest commit

 

History

History
74 lines (59 loc) · 2.62 KB

README.md

File metadata and controls

74 lines (59 loc) · 2.62 KB

Setup

Create a new conda env, and Install the necessary dependencies:

git clone https://github.com/fitzpchao/RSEvalKit
cd RSEvalKit
conda create -n rseval
conda activate rseval
pip install -r requirements.txt

Dataset

  1. Please refer to the evaluation data description and download the vhm_eval dataset.
  2. Prepare the datasets following the file structure below:
{dataset_base}/
    # image dirs
    abspos_c1f4_dota-test_mc/
        image0.jpg
        image1.jpg
        ...
    abspos_dota-test_mc/
    ...

    # json files
    abspos_c1f4_dota-test_mc.json
    abspos_dota-test_mc.json
    ...

Evaluation

Download VHM weights

Please refer to this guide to download the corresponding VHM model weights.

Single GPU:

$ CUDA_VISIBLE_DEVICES=0 torchrun --nproc_per_node=1 --master_port 52302 ./model_eval_mp.py --task all --batch-per-gpu 1 --dataset-base ${dataset_base} --save-path ${your_save_path}

Multiple GPUs:

If you want to evaluate our model on multiple GPUs, you can tweak the arguments --nproc_per_node and --batch-per-gpu, then make sure that the value of these arguments follow the equation:

${nproc_per_node} = ${batch-per-gpu} × ${the number of your GPUs}

For example, to perform an evaluation on 4 GPUs, each of which has a batchsize of 3, you should run:

$ CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=12 --master_port 52302 ./model_eval_mp.py --task all --batch-per-gpu 3 --dataset-base ${dataset_base} --save-path ${your_save_path}

Citation

Please refer to our paper for more technical details:

If this code is helpful to your research, please consider citing our paper by:

@misc{pang2024vhmversatilehonestvision,
      title={VHM: Versatile and Honest Vision Language Model for Remote Sensing Image Analysis}, 
      author={Chao Pang and Xingxing Weng and Jiang Wu and Jiayu Li and Yi Liu and Jiaxing Sun and Weijia Li and Shuai Wang and Litong Feng and Gui-Song Xia and Conghui He},
      year={2024},
      eprint={2403.20213},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2403.20213}, 
}

Acknowledgements

We gratefully acknowledge the VLMEvalKit works.