generated from fkodom/python-repo-template
-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
vit.py
238 lines (215 loc) · 7.35 KB
/
vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from functools import partial
from typing import Optional, Union, cast
import torch
from einops import rearrange
from torch import Tensor, nn
from soft_mixture_of_experts.transformer import SoftMoEEncoder, SoftMoEEncoderLayer
class ViTWrapper(nn.Module):
def __init__(
self,
num_classes: Optional[int],
encoder: Union[SoftMoEEncoder, nn.TransformerEncoder],
image_size: int = 224,
patch_size: int = 16,
num_channels: int = 3,
dropout: float = 0.0,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().__init__()
if not image_size % patch_size == 0:
raise ValueError(
f"image_size ({image_size}) must be divisible by "
f"patch_size ({patch_size})"
)
self.num_classes = num_classes
self.encoder = encoder
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
# Extract model dimension from the first layer of the encoder.
# TODO: Find a cleaner way to do this? Unfortunately, TransformerEncoder
# and TransformerEncoderLayer don't have a 'd_model' property.
encoder_layer = cast(
Union[SoftMoEEncoderLayer, nn.TransformerEncoderLayer],
encoder.layers[0],
)
norm_layer = cast(nn.LayerNorm, encoder_layer.norm1)
d_model = norm_layer.normalized_shape[0]
num_patches = (image_size // patch_size) ** 2
patch_dim = num_channels * patch_size**2
self.patch_to_embedding = nn.Sequential(
nn.LayerNorm(patch_dim, device=device, dtype=dtype),
nn.Linear(patch_dim, d_model, device=device, dtype=dtype),
nn.LayerNorm(d_model, device=device, dtype=dtype),
)
self.pos_embedding = nn.Parameter(
torch.randn(1, num_patches, d_model, device=device, dtype=dtype)
)
self.dropout = nn.Dropout(dropout)
self.out: nn.Module
if num_classes is not None:
self.out = nn.Linear(d_model, num_classes, device=device, dtype=dtype)
else:
self.out = nn.Identity()
def forward(self, x: Tensor, return_features: bool = False) -> Tensor:
if not x.size(1) == self.num_channels:
raise ValueError(
f"Expected num_channels={self.num_channels} but found {x.size(1)}"
)
elif not x.size(2) == x.size(3) == self.image_size:
raise ValueError(
f"Expected image_size={self.image_size} but found {x.size(2)}x{x.size(3)}"
)
x = rearrange(
x,
"b c (h p1) (w p2) -> b (h w) (p1 p2 c)",
p1=self.patch_size,
p2=self.patch_size,
)
x = self.patch_to_embedding(x)
x = x + self.pos_embedding
x = self.dropout(x)
x = self.encoder(x)
if return_features:
return x
x = x.mean(dim=-2)
return self.out(x)
class ViT(ViTWrapper):
def __init__(
self,
num_classes: Optional[int],
image_size: int = 224,
patch_size: int = 16,
d_model: int = 512,
dim_feedforward: int = 2048,
nhead: int = 8,
num_encoder_layers: int = 6,
num_channels: int = 3,
dropout: float = 0.0,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
encoder_layer = nn.TransformerEncoderLayer(
d_model=d_model,
dim_feedforward=dim_feedforward,
nhead=nhead,
device=device,
dtype=dtype,
)
encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_encoder_layers)
super().__init__(
num_classes=num_classes,
encoder=encoder,
image_size=image_size,
patch_size=patch_size,
num_channels=num_channels,
dropout=dropout,
device=device,
dtype=dtype,
)
class SoftMoEViT(ViTWrapper):
def __init__(
self,
num_classes: Optional[int],
image_size: int = 224,
patch_size: int = 16,
d_model: int = 512,
dim_feedforward: int = 2048,
nhead: int = 8,
num_encoder_layers: int = 6,
num_experts: int = 128,
slots_per_expert: int = 1,
num_channels: int = 3,
dropout: float = 0.0,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
encoder_layer = SoftMoEEncoderLayer(
d_model=d_model,
dim_feedforward=dim_feedforward,
nhead=nhead,
num_experts=num_experts,
slots_per_expert=slots_per_expert,
device=device,
dtype=dtype,
)
encoder = SoftMoEEncoder(encoder_layer, num_layers=num_encoder_layers)
super().__init__(
num_classes=num_classes,
encoder=encoder,
image_size=image_size,
patch_size=patch_size,
num_channels=num_channels,
dropout=dropout,
device=device,
dtype=dtype,
)
def _build_vit(
num_classes: Optional[int],
image_size: int,
patch_size: int,
d_model: int,
nhead: int,
num_encoder_layers: int,
mlp_ratio: float = 4.0,
num_channels: int = 3,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[torch.dtype] = None,
) -> ViT:
return ViT(
num_classes=num_classes,
image_size=image_size,
patch_size=patch_size,
d_model=d_model,
dim_feedforward=int(d_model * mlp_ratio),
nhead=nhead,
num_encoder_layers=num_encoder_layers,
num_channels=num_channels,
device=device,
dtype=dtype,
)
vit_small = partial(_build_vit, d_model=384, nhead=6, num_encoder_layers=12)
vit_base = partial(_build_vit, d_model=768, nhead=12, num_encoder_layers=12)
vit_large = partial(_build_vit, d_model=1024, nhead=16, num_encoder_layers=24)
vit_huge = partial(_build_vit, d_model=1280, nhead=16, num_encoder_layers=32)
def _build_soft_moe_vit(
num_classes: Optional[int],
image_size: int,
patch_size: int,
d_model: int,
nhead: int,
num_encoder_layers: int,
num_experts: int,
slots_per_expert: int = 1,
mlp_ratio: float = 4.0,
num_channels: int = 3,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[torch.dtype] = None,
) -> SoftMoEViT:
return SoftMoEViT(
num_classes=num_classes,
image_size=image_size,
patch_size=patch_size,
d_model=d_model,
dim_feedforward=int(d_model * mlp_ratio),
nhead=nhead,
num_encoder_layers=num_encoder_layers,
num_experts=num_experts,
slots_per_expert=slots_per_expert,
num_channels=num_channels,
device=device,
dtype=dtype,
)
soft_moe_vit_small = partial(
_build_soft_moe_vit, d_model=384, nhead=6, num_encoder_layers=12
)
soft_moe_vit_base = partial(
_build_soft_moe_vit, d_model=768, nhead=12, num_encoder_layers=12
)
soft_moe_vit_large = partial(
_build_soft_moe_vit, d_model=1024, nhead=16, num_encoder_layers=24
)
soft_moe_vit_huge = partial(
_build_soft_moe_vit, d_model=1280, nhead=16, num_encoder_layers=32
)