forked from mCodingLLC/VideosSampleCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhow_fast_is_sort.py
299 lines (236 loc) · 9.12 KB
/
how_fast_is_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import operator
import random
import string
import time
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from itertools import product
import matplotlib.axes
import matplotlib.figure
import matplotlib.pyplot as plt
import numpy as np
from pandas import DataFrame, read_pickle
def is_sorted(a: list, *, key=None, reverse=False) -> bool:
if not a:
return True
b = a if key is None else map(key, a)
cmp = operator.le if not reverse else operator.ge
head = iter(b)
tail = iter(b)
next(tail)
return all(cmp(x, y) for x, y in zip(head, tail))
class DataMaker(ABC):
@abstractmethod
def make(self, size, seed) -> list:
return []
def compatible_keys(self):
return [None]
def compatible_sort_kwargs(self):
keys = self.compatible_keys()
kwargs_list = []
if None in keys:
kwargs_list += [None, {"reverse": True}]
kwargs_list += [{"key": key, "reverse": True} for key in keys if key is not None]
kwargs_list += [{"key": key} for key in keys if key is not None]
return kwargs_list
class UniformIntMaker(DataMaker):
def make(self, size, seed):
np.random.seed(seed)
return list(np.random.randint(low=0, high=2 ** 31 - 1, size=size))
class SortedUniformIntMaker(DataMaker):
def make(self, size, seed):
np.random.seed(seed)
return sorted(np.random.randint(low=0, high=2 ** 31 - 1, size=size))
class NearlySortedUniformIntMaker(DataMaker):
def make(self, size, seed):
np.random.seed(seed)
data = sorted(np.random.randint(low=0, high=2 ** 31 - 1, size=size))
if len(data) < 3:
return data
for _ in range(10):
i, j = np.random.randint(low=0, high=size - 1, size=2)
data[i], data[j] = data[j], data[i]
return data
class UniformFloatMaker(DataMaker):
def make(self, size, seed):
np.random.seed(seed)
return list(np.random.random(size=size))
class SortedUniformFloatMaker(DataMaker):
def make(self, size, seed):
np.random.seed(seed)
return sorted(np.random.random(size=size))
class GaussianFloatMaker(DataMaker):
def make(self, size, seed):
np.random.seed(seed)
return list(np.random.normal(size=size))
class AFewIntMaker(DataMaker):
def make(self, size, seed):
np.random.seed(seed)
return list(np.random.randint(low=0, high=32, size=size))
def random_str(size):
return ''.join(random.choices(string.printable, k=size))
class GeometricStringMaker(DataMaker):
def make(self, size, seed):
np.random.seed(seed)
lengths = np.random.geometric(p=1 / 5, size=size)
strs = [random_str(l) for l in lengths]
return strs
class SortedGeometricStringMaker(DataMaker):
def make(self, size, seed):
np.random.seed(seed)
lengths = np.random.geometric(p=1 / 5, size=size)
strs = [random_str(l) for l in lengths]
return sorted(strs)
@dataclass(frozen=True, order=True)
class TwoIntsAndAString:
x: int
y: int
s: str
class UniformTwoIntsAndAGeometricStringMaker(DataMaker):
def make(self, size, seed):
np.random.seed(seed)
xs = np.random.randint(low=0, high=2 ** 31 - 1, size=size)
ys = np.random.randint(low=0, high=2 ** 31 - 1, size=size)
lengths = np.random.geometric(p=1 / 5, size=size)
strs = (random_str(l) for l in lengths)
data = [TwoIntsAndAString(x, y, s) for x, y, s in zip(xs, ys, strs)]
return data
class UniformTwoIntsAndAGeometricStringTupleMaker(DataMaker):
def make(self, size, seed):
np.random.seed(seed)
xs = np.random.randint(low=0, high=2 ** 31 - 1, size=size)
ys = np.random.randint(low=0, high=2 ** 31 - 1, size=size)
lengths = np.random.geometric(p=1 / 5, size=size)
strs = (random_str(l) for l in lengths)
data = [(x, y, s) for x, y, s in zip(xs, ys, strs)]
return data
@dataclass
class SortingTestCase:
size: int
seed: int
data_maker: DataMaker
sort_kwargs: dict = None
times_ns: list[int] = field(default_factory=list)
def as_tuple(self) -> tuple:
return (self.size, self.seed, self.data_maker.__class__.__name__, self.sort_kwargs, self.times_ns)
def run(self) -> None:
data = self.data_maker.make(self.size, self.seed)
kwargs = self.sort_kwargs
if kwargs:
start = time.perf_counter_ns()
data.sort(**kwargs)
end = time.perf_counter_ns()
assert is_sorted(data, **kwargs)
else:
start = time.perf_counter_ns()
data.sort()
end = time.perf_counter_ns()
assert is_sorted(data)
elapsed = end - start
self.times_ns.append(elapsed)
def make_all_test_cases(sizes: list[int], seeds: list[int],
data_makers: list[DataMaker], use_kwargs: bool) -> list[SortingTestCase]:
tests: list[SortingTestCase] = []
for size, seed, data_maker in product(sizes, seeds, data_makers):
if use_kwargs:
for sort_kwargs in data_maker.compatible_sort_kwargs():
tests.append(SortingTestCase(size=size, seed=seed, data_maker=data_maker, sort_kwargs=sort_kwargs))
else:
tests.append(SortingTestCase(size=size, seed=seed, data_maker=data_maker, sort_kwargs=None))
return tests
def run_tests_n_times(tests: list[SortingTestCase], trials: int, shuffler: random.Random) -> None:
for i in range(trials):
print(f'starting epoch {i + 1}/{trials}')
shuffler.shuffle(tests)
for test in tests:
test.run()
def test_data_to_df(tests: list[SortingTestCase]) -> DataFrame:
df = DataFrame.from_records(data=map(lambda test: test.as_tuple(), tests),
columns=["size", "seed", "data_maker", "sort_kwargs", "time"])
df['sort_kwargs'] = df['sort_kwargs'].astype(str)
df['data_maker'] = df['data_maker'].astype(str)
df = df.explode("time")
df['time'] = df['time'].astype(float)
df['time'] /= 10 ** 3 # convert to microseconds
df['reverse'] = df['sort_kwargs'].str.contains("reverse")
return df
def make_plot(df: DataFrame):
fig: matplotlib.figure.Figure
ax: matplotlib.axes.Axes
fig, ax = plt.subplots()
ax.set_title("Sorting Times")
ax.set_xlabel("Number of elements to sort")
ax.set_ylabel("Time (microseconds)")
lines = []
grouped = df.groupby(["data_maker", "sort_kwargs"])
for name, group in grouped:
means = group.groupby("size")["time"].mean()
cls, kwargs = name
label = str(cls) if kwargs == "None" else f'{cls}, {kwargs}'
line, = ax.plot(means, label=label)
lines.append(line)
leg = ax.legend(fancybox=True, shadow=True)
lined = {} # maps legend lines to original lines.
for legline, origline in zip(leg.get_lines(), lines):
legline.set_picker(True)
lined[legline] = origline
def on_pick(event):
legline = event.artist
origline = lined[legline]
visible = not origline.get_visible()
origline.set_visible(visible)
legline.set_alpha(1.0 if visible else 0.2)
ax.relim(visible_only=True)
ax.autoscale_view()
fig.canvas.draw()
fig.canvas.mpl_connect('pick_event', on_pick)
plt.show()
def main():
recompute_results = True
pkl_filename = "sort_times_df.pkl"
include_reverse_when_plotting = False
sizes = list(range(1024))
seeds = list(range(10))
trials = 20 # lower this if you don't want to wait as long, 1 is fine "just to see"
# add in or comment out data makers
data_makers: list[DataMaker] = [
UniformIntMaker(),
# AFewIntMaker(),
# SortedUniformIntMaker(),
# NearlySortedUniformIntMaker(),
UniformFloatMaker(),
# SortedUniformFloatMaker(),
# GaussianFloatMaker(),
GeometricStringMaker(),
# SortedGeometricStringMaker(),
UniformTwoIntsAndAGeometricStringMaker(),
UniformTwoIntsAndAGeometricStringTupleMaker(),
]
if recompute_results:
tests = make_all_test_cases(sizes=sizes, seeds=seeds, data_makers=data_makers, use_kwargs=True)
shuffle_random = random.Random(1)
run_tests_n_times(tests, trials, shuffle_random)
df = test_data_to_df(tests)
df.to_pickle(pkl_filename)
else:
df = read_pickle(pkl_filename)
maker_names = [maker.__class__.__name__ for maker in data_makers]
df = df[df['data_maker'].isin(maker_names)]
if not include_reverse_when_plotting:
df = df[df['reverse'] == False]
make_plot(df)
if __name__ == '__main__':
main()
# Performance changes with
# 1. How much to sort
# 2. The type of data
# 3. Parameters of the sort
# 4. The distribution of the data
# Performance can also depend on
# 1. Your computer hardware, operating system, etc.
# 2. The version of Python 3.8, 3.9 etc.
# 3. Which type of Python CPython, PyPy etc.
# 4. The order you run the tests in
# 5. What else is running at the same time
# 6. Random events, temperature, nearby electomagnetic fields
# 7. Many more things...