From ffdf114460838b4442a91917f7b4b82450b8f1fb Mon Sep 17 00:00:00 2001 From: Giacomo Pope Date: Mon, 12 Aug 2024 15:53:24 +0100 Subject: [PATCH 1/3] add truncate methods --- src/flint/types/fmpz_mod_poly.pyx | 315 +++++++++++++++++++++++++----- 1 file changed, 261 insertions(+), 54 deletions(-) diff --git a/src/flint/types/fmpz_mod_poly.pyx b/src/flint/types/fmpz_mod_poly.pyx index 8bac8772..6503350f 100644 --- a/src/flint/types/fmpz_mod_poly.pyx +++ b/src/flint/types/fmpz_mod_poly.pyx @@ -22,7 +22,7 @@ from flint.utils.flint_exceptions import DomainError cdef class fmpz_mod_poly_ctx: r""" - Context object for creating :class:`~.fmpz_mod_poly` initalised + Context object for creating :class:`~.fmpz_mod_poly` initalised with a modulus :math:`N`. >>> fmpz_mod_poly_ctx(2**127 - 1) @@ -162,7 +162,7 @@ cdef class fmpz_mod_poly_ctx: n = PyList_GET_SIZE(val) fmpz_mod_poly_fit_length(poly, n, self.mod.val) - + # TODO: should we support conversion from nmod? fmpz_init(x) for i in range(n): @@ -191,7 +191,7 @@ cdef class fmpz_mod_poly_ctx: if typecheck(obj, list): return self.set_list_as_fmpz_mod_poly(poly, obj) - # Set val from fmpz_mod_poly + # Set val from fmpz_mod_poly if typecheck(obj, fmpz_mod_poly): if self != (obj).ctx: raise ValueError("moduli must match") @@ -231,30 +231,30 @@ cdef class fmpz_mod_poly_ctx: if self != (obj).ctx: raise ValueError("moduli must match") return obj - + cdef fmpz_mod_poly res res = self.new_ctype_poly() check = self.set_any_as_fmpz_mod_poly(res.val, obj) if check is NotImplemented: return NotImplemented - + return res cdef new_ctype_poly(self): return fmpz_mod_poly.__new__(fmpz_mod_poly, None, self) def __eq__(self, other): - # Most often, we expect both `fmpz_mod_poly` to be pointing + # Most often, we expect both `fmpz_mod_poly` to be pointing # to the same ctx, so this seems the fastest way to check if self is other: return True - + # If they're not the same object in memory, they may have the # same modulus, which is good enough if typecheck(other, fmpz_mod_poly_ctx): return self.mod == (other).mod return False - + def __hash__(self): return hash(self.modulus()) @@ -271,7 +271,7 @@ cdef class fmpz_mod_poly_ctx: """ Returns a minimal generating polynomial for sequence `vals`. - A minimal generating polynomial is a monic polynomial, of minimal degree `d`, + A minimal generating polynomial is a monic polynomial, of minimal degree `d`, that annihilates any consecutive `d+1` terms in seq. Assumes that the modulus is prime. @@ -296,7 +296,7 @@ cdef class fmpz_mod_poly_ctx: check = self.mod.set_any_as_fmpz_mod(&xs.val[i], vals[i]) if check is NotImplemented: raise ValueError(f"Unable to cast {vals[i]} to an `fmpz_mod`") - + res = self.new_ctype_poly() fmpz_mod_poly_minpoly(res.val, xs.val, n, self.mod.val) @@ -305,7 +305,7 @@ cdef class fmpz_mod_poly_ctx: cdef class fmpz_mod_poly(flint_poly): """ The *fmpz_mod_poly* type represents univariate polynomials - over integer modulo an arbitrary-size modulus. + over integer modulo an arbitrary-size modulus. For wordsize modulus, see :class:`~.nmod_poly`. An *fmpz_mod_poly* element is constructed from an :class:`~.fmpz_mod_poly_ctx` @@ -361,7 +361,7 @@ cdef class fmpz_mod_poly(flint_poly): @staticmethod def _sub_(left, right): cdef fmpz_mod_poly res - + # Case when left and right are already fmpz_mod_poly if typecheck(left, fmpz_mod_poly) and typecheck(right, fmpz_mod_poly): if not (left).ctx == (right).ctx: @@ -406,13 +406,13 @@ cdef class fmpz_mod_poly(flint_poly): fmpz_mod_poly_scalar_mul_fmpz( res.val, self.val, (other).val, self.ctx.mod.val ) - return res + return res def __mul__(self, other): cdef fmpz_mod_poly res # If input is a scalar, use fastwe multiplication - if (typecheck(other, fmpz) or typecheck(other, fmpz_mod) or typecheck(other, int)): + if (typecheck(other, int) or typecheck(other, fmpz) or typecheck(other, fmpz_mod)): return self.scalar_mul(other) # Otherwise perform polynomial multiplication @@ -435,7 +435,7 @@ cdef class fmpz_mod_poly(flint_poly): other = self.ctx.mod.any_as_fmpz_mod(other) if other is NotImplemented: return NotImplemented - + if other == 0: raise ZeroDivisionError(f"Cannot divide by zero") @@ -526,7 +526,7 @@ cdef class fmpz_mod_poly(flint_poly): fmpz_mod_poly_div( res.val, (left).val, (right).val, res.ctx.mod.val ) - return res + return res def __floordiv__(self, other): return fmpz_mod_poly._floordiv_(self, other) @@ -548,10 +548,10 @@ cdef class fmpz_mod_poly(flint_poly): res.val, self.val, e_ulong, self.ctx.mod.val ) return res - + def left_shift(self, slong n): """ - Returns ``self`` shifted left by ``n`` coefficients by inserting + Returns ``self`` shifted left by ``n`` coefficients by inserting zero coefficients. This is equivalent to multiplying the polynomial by x^n @@ -584,7 +584,7 @@ cdef class fmpz_mod_poly(flint_poly): def right_shift(self, slong n): """ - Returns ``self`` shifted right by ``n`` coefficients. + Returns ``self`` shifted right by ``n`` coefficients. This is equivalent to the floor division of the polynomial by x^n @@ -657,7 +657,7 @@ cdef class fmpz_mod_poly(flint_poly): return fmpz_mod_poly._mod_(s, t) def __rmod__(s, t): - return fmpz_mod_poly._mod_(t, s) + return fmpz_mod_poly._mod_(t, s) def __richcmp__(self, other, int op): cdef bint res @@ -711,7 +711,7 @@ cdef class fmpz_mod_poly(flint_poly): return self.multipoint_evaluate(input) else: return self.evaluate(input) - + def evaluate(self, input): """ Evaluate ``self`` at a point in the base ring. This is @@ -739,7 +739,7 @@ cdef class fmpz_mod_poly(flint_poly): """ Returns a list of values computed from evaluating ``self`` at the ``n`` values given in the vector ``val`` - + TODO: We could allow passing as an optional input the subproduct tree, which would allow for faster, repeated multipoint evaluations @@ -755,14 +755,14 @@ cdef class fmpz_mod_poly(flint_poly): if not isinstance(vals, (list, tuple)): raise ValueError("Input must be a list of points") - + n = len(vals) xs = fmpz_vec(n) for i in range(n): check = self.ctx.mod.set_any_as_fmpz_mod(&xs.val[i], vals[i]) if check is NotImplemented: raise ValueError(f"Unable to cast {vals[i]} to an `fmpz_mod`") - + # Call for multipoint eval, iterative horner will be used # for small arrays (len < 32) and a fast eval for larger ones # using a subproduct tree @@ -782,7 +782,7 @@ cdef class fmpz_mod_poly(flint_poly): """ Returns the composition of two polynomials - To be precise about the order of composition, given ``self``, and ``other`` + To be precise about the order of composition, given ``self``, and ``other`` by `f(x)`, `g(x)`, returns `f(g(x))`. >>> R = fmpz_mod_poly_ctx(163) @@ -799,15 +799,15 @@ cdef class fmpz_mod_poly(flint_poly): raise TypeError(f"Cannot compose the polynomial with input: {other}") res = self.ctx.new_ctype_poly() - fmpz_mod_poly_compose(res.val, self.val, (val).val, self.ctx.mod.val) - return res + fmpz_mod_poly_compose(res.val, self.val, (val).val, self.ctx.mod.val) + return res def compose_mod(self, other, modulus): """ Returns the composition of two polynomials modulo a third. - To be precise about the order of composition, given ``self``, and ``other`` - and ``modulus`` by `f(x)`, `g(x)` and `h(x)`, returns `f(g(x)) \mod h(x)`. + To be precise about the order of composition, given ``self``, and ``other`` + and ``modulus`` by `f(x)`, `g(x)` and `h(x)`, returns `f(g(x)) \mod h(x)`. We require that `h(x)` is non-zero. >>> R = fmpz_mod_poly_ctx(163) @@ -823,7 +823,7 @@ cdef class fmpz_mod_poly(flint_poly): val = self.ctx.any_as_fmpz_mod_poly(other) if val is NotImplemented: raise TypeError(f"cannot compose the polynomial with input: {other}") - + h = self.ctx.any_as_fmpz_mod_poly(modulus) if h is NotImplemented: raise TypeError(f"cannot reduce the polynomial with input: {modulus}") @@ -832,8 +832,8 @@ cdef class fmpz_mod_poly(flint_poly): raise ZeroDivisionError("cannot reduce modulo zero") res = self.ctx.new_ctype_poly() - fmpz_mod_poly_compose_mod(res.val, self.val, (val).val, (h).val, self.ctx.mod.val) - return res + fmpz_mod_poly_compose_mod(res.val, self.val, (val).val, (h).val, self.ctx.mod.val) + return res cpdef long length(self): """ @@ -843,7 +843,7 @@ cdef class fmpz_mod_poly(flint_poly): >>> f = R([1,2,3]) >>> f.length() 3 - + """ return fmpz_mod_poly_length(self.val, self.ctx.mod.val) @@ -870,7 +870,7 @@ cdef class fmpz_mod_poly(flint_poly): True """ return 0 != fmpz_mod_poly_is_zero(self.val, self.ctx.mod.val) - + def is_one(self): """ Return ``True`` if the polynomial is equal to one @@ -882,7 +882,7 @@ cdef class fmpz_mod_poly(flint_poly): True """ return 0 != fmpz_mod_poly_is_one(self.val, self.ctx.mod.val) - + def is_gen(self): """ Return ``True`` if the polynomial is the generator @@ -958,7 +958,7 @@ cdef class fmpz_mod_poly(flint_poly): """ cdef fmpz_mod_poly res cdef slong d - + if degree is not None: d = degree if d != degree or d < 0: @@ -974,9 +974,9 @@ cdef class fmpz_mod_poly(flint_poly): def truncate(self, slong n): r""" - Notionally truncate the polynomial to have length ``n``. If + Notionally truncate the polynomial to have length ``n``. If ``n`` is larger than the length of the input, then ``self`` is - returned. If ``n`` is not positive, then the zero polynomial + returned. If ``n`` is not positive, then the zero polynomial is returned. Effectively returns this polynomial :math:`\mod x^n`. @@ -1031,8 +1031,8 @@ cdef class fmpz_mod_poly(flint_poly): """ Return this polynomial divided by its leading coefficient. - If ``check`` is True, raises ValueError if the leading coefficient - is not invertible modulo N. If ``check`` is False and the leading + If ``check`` is True, raises ValueError if the leading coefficient + is not invertible modulo N. If ``check`` is False and the leading coefficient is not invertible, the output is undefined. >>> R = fmpz_mod_poly_ctx(163) @@ -1049,7 +1049,7 @@ cdef class fmpz_mod_poly(flint_poly): res.val, self.val, self.ctx.mod.val ) else: - fmpz_init(f) + fmpz_init(f) fmpz_mod_poly_make_monic_f( f, res.val, self.val, self.ctx.mod.val ) @@ -1116,12 +1116,12 @@ cdef class fmpz_mod_poly(flint_poly): >>> f = 30*x**6 + 104*x**5 + 76*x**4 + 33*x**3 + 70*x**2 + 44*x + 65 >>> g = 43*x**6 + 91*x**5 + 77*x**4 + 113*x**3 + 71*x**2 + 132*x + 60 >>> mod = x**4 + 93*x**3 + 78*x**2 + 72*x + 149 - >>> + >>> >>> f.mulmod(g, mod) 106*x^3 + 44*x^2 + 53*x + 77 """ cdef fmpz_mod_poly res - + other = self.ctx.any_as_fmpz_mod_poly(other) if other is NotImplemented: raise TypeError(f"Cannot interpret {other} as a polynomial") @@ -1151,8 +1151,8 @@ cdef class fmpz_mod_poly(flint_poly): >>> f = 30*x**6 + 104*x**5 + 76*x**4 + 33*x**3 + 70*x**2 + 44*x + 65 >>> g = 43*x**6 + 91*x**5 + 77*x**4 + 113*x**3 + 71*x**2 + 132*x + 60 >>> mod = x**4 + 93*x**3 + 78*x**2 + 72*x + 149 - >>> - >>> f.pow_mod(123, mod) + >>> + >>> f.pow_mod(123, mod) 3*x^3 + 25*x^2 + 115*x + 161 >>> f.pow_mod(2**64, mod) 52*x^3 + 96*x^2 + 136*x + 9 @@ -1171,7 +1171,7 @@ cdef class fmpz_mod_poly(flint_poly): # Output polynomial res = self.ctx.new_ctype_poly() - + # For small exponents, use a simple binary exponentiation method if e.bit_length() < 32: fmpz_mod_poly_powmod_ui_binexp( @@ -1267,7 +1267,7 @@ cdef class fmpz_mod_poly(flint_poly): if not self.ctx.is_prime(): raise NotImplementedError("gcd algorithm assumes that the modulus is prime") - + other = self.ctx.any_as_fmpz_mod_poly(other) if other is NotImplemented: raise TypeError(f"Cannot interpret {other} as a polynomial") @@ -1343,7 +1343,7 @@ cdef class fmpz_mod_poly(flint_poly): >>> f.integral() 111*x^4 + 58*x^3 + 98*x^2 + 117*x - """ + """ new_coeffs = [0] + [c/n for n, c in enumerate(self.coeffs(), 1)] return self.ctx(new_coeffs) @@ -1399,7 +1399,7 @@ cdef class fmpz_mod_poly(flint_poly): >>> f.inverse_mod(g) 41*x^5 + 121*x^4 + 47*x^3 + 41*x^2 + 6*x + 5 """ - cdef fmpz_mod_poly res + cdef fmpz_mod_poly res cdef fmpz_t f other = self.ctx.any_as_fmpz_mod_poly(other) @@ -1433,7 +1433,7 @@ cdef class fmpz_mod_poly(flint_poly): 45*x^4 + 23*x^3 + 159*x^2 + 151*x + 110 """ cdef fmpz_t f - cdef fmpz_mod_poly res + cdef fmpz_mod_poly res res = self.ctx.new_ctype_poly() fmpz_init(f) @@ -1458,7 +1458,7 @@ cdef class fmpz_mod_poly(flint_poly): fmpz_mod(57, 163) """ - cdef fmpz_mod res + cdef fmpz_mod res other = self.ctx.any_as_fmpz_mod_poly(other) if other is NotImplemented: @@ -1536,6 +1536,213 @@ cdef class fmpz_mod_poly(flint_poly): ) return res + def equal_trunc(self, other, slong n): + """ + Returns if two polynomials are equal when truncated to the first ``n`` terms + + >>> R = fmpz_mod_poly_ctx(163) + >>> f = R([1,2,3,4,5]) + >>> h = R([1,2,3]) + >>> f.equal_trunc(h, 3) + True + >>> f.equal_trunc(h, 4) + False + """ + # Only allow comparison with other fmpz_mod_poly + if not typecheck(other, fmpz_mod_poly): + return False + + # Ensure the contexts match + other_c = other + if self.ctx != other_c.ctx: + return False + + return 1 == fmpz_mod_poly_equal_trunc(self.val, other_c.val, n, self.ctx.mod.val) + + def add_trunc(self, other, slong n): + """ + Truncate ``self`` and ``other`` to polynomials of length ``n`` and return their sum + + >>> R = fmpz_mod_poly_ctx(163) + >>> f = R([1,2,3,4,5]) + >>> h = R([1,2,3]) + >>> f.add_trunc(h, 2) + 4*x + 2 + >>> f.add_trunc(h, 3) + 6*x^2 + 4*x + 2 + """ + # Only allow addition with other fmpz_mod_poly + if not typecheck(other, fmpz_mod_poly): + raise TypeError("other polynomial must be of type fmpz_mod_poly") + + # Ensure the contexts match + other_c = other + if self.ctx != other_c.ctx: + raise ValueError("other polynomial's context does not match") + + cdef fmpz_mod_poly res + res = self.ctx.new_ctype_poly() + fmpz_mod_poly_add_series( + res.val, self.val, other_c.val, n, res.ctx.mod.val + ) + return res + + def sub_trunc(self, other, slong n): + """ + Truncate ``self`` and ``other`` to polynomials of length ``n`` and return their difference + + >>> R = fmpz_mod_poly_ctx(163) + >>> f = R([2,3,5,7,11]) + >>> h = R([1,2,4,8,16]) + >>> f.sub_trunc(h, 2) + x + 1 + >>> f.sub_trunc(h, 4) + 162*x^3 + x^2 + x + 1 + """ + # Only allow subtraction with other fmpz_mod_poly + if not typecheck(other, fmpz_mod_poly): + raise TypeError("other polynomial must be of type fmpz_mod_poly") + + # Ensure the contexts match + other_c = other + if self.ctx != other_c.ctx: + raise ValueError("other polynomial's context does not match") + + cdef fmpz_mod_poly res + res = self.ctx.new_ctype_poly() + fmpz_mod_poly_sub_series( + res.val, self.val, other_c.val, n, res.ctx.mod.val + ) + return res + + def mul_low(self, other, slong n): + r""" + Returns the lowest ``n`` coefficients of the multiplication of ``self`` with ``other`` + + Equivalent to computing `f(x) \cdot g(x) \mod x^n` + + >>> R = fmpz_mod_poly_ctx(163) + >>> f = R([2,3,5,7,11]) + >>> g = R([1,2,4,8,16]) + >>> f.mul_low(g, 5) + 101*x^4 + 45*x^3 + 19*x^2 + 7*x + 2 + >>> f.mul_low(g, 3) + 19*x^2 + 7*x + 2 + >>> f.mul_low(g, 1) + 2 + """ + # Only allow multiplication with other fmpz_mod_poly + if not typecheck(other, fmpz_mod_poly): + raise TypeError("other polynomial must be of type fmpz_mod_poly") + + # Ensure the contexts match + other_c = other + if self.ctx != other_c.ctx: + raise ValueError("other polynomial's context does not match") + + cdef fmpz_mod_poly res + res = self.ctx.new_ctype_poly() + fmpz_mod_poly_mullow( + res.val, self.val, other_c.val, n, res.ctx.mod.val + ) + return res + + def mul_high(self, other, slong start): + r""" + Returns from coefficients from ``start`` onwards of the multiplication of ``self`` with ``other`` + + # TODO!!! + # + # Is this expected behaviour? Seems weird. + # + >>> R = fmpz_mod_poly_ctx(163) + >>> f = R([2,3,5,7,11]) + >>> g = R([1,2,4,8,16]) + >>> f.mul_high(g, 0) + 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 + 45*x^3 + 19*x^2 + 7*x + 2 + >>> f.mul_high(g, 1) + 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 + 45*x^3 + 19*x^2 + 7*x + >>> f.mul_high(g, 2) + 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 + 45*x^3 + 19*x^2 + >>> f.mul_high(g, 3) + 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 + 45*x^3 + >>> f.mul_high(g, 4) + 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 + >>> f.mul_high(g, 5) + 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 + 45*x^3 + 19*x^2 + 7*x + 2 + """ + # Only allow multiplication with other fmpz_mod_poly + if not typecheck(other, fmpz_mod_poly): + raise TypeError("other polynomial must be of type fmpz_mod_poly") + + # Ensure the contexts match + other_c = other + if self.ctx != other_c.ctx: + raise ValueError("other polynomial's context does not match") + + cdef fmpz_mod_poly res + res = self.ctx.new_ctype_poly() + fmpz_mod_poly_mulhigh( + res.val, self.val, other_c.val, start, res.ctx.mod.val + ) + return res + + def mul_mod(self, other, modulus): + r""" + Returns remainder of the product of ``self`` with ``other`` after reduction by ``modulus`` + + Equivalent to computing `f(x) \cdot g(x) \mod x^n` + + >>> R = fmpz_mod_poly_ctx(163) + >>> f = R([2,3,5,7,11]) + >>> g = R([1,2,4,8,16]) + >>> h = R([1,0,1]) + >>> f.mul_mod(g, h) == (f * g) % h + True + >>> f.mul_mod(g, h) + 63*x + 80 + """ + # Only allow multiplication and reduction with other fmpz_mod_poly + if not typecheck(other, fmpz_mod_poly) or not typecheck(modulus, fmpz_mod_poly): + raise TypeError("input polynomials must be of type fmpz_mod_poly") + + # Ensure the contexts match + other_c = other + modulus_c = modulus + if (self.ctx != other_c.ctx) or (self.ctx != modulus_c.ctx): + raise ValueError("other polynomial's context does not match") + + cdef fmpz_mod_poly res + res = self.ctx.new_ctype_poly() + fmpz_mod_poly_mulmod( + res.val, self.val, other_c.val, modulus_c.val, res.ctx.mod.val + ) + return res + + def pow_trunc(self, slong e, slong n): + """ + Returns ``self`` raised to the power ``e`` modulo `x^n`: + :math:`f^e \mod x^n`/ + + Note: For exponents larger that 2^31 (which do not fit inside a ulong) use the + method :method:`~.pow_mod` with the explicit modulus `x^n`. + + >>> R = fmpz_mod_poly_ctx(163) + >>> x = R.gen() + >>> f = 30*x**6 + 104*x**5 + 76*x**4 + 33*x**3 + 70*x**2 + 44*x + 65 + >>> f.pow_trunc(2**20, 30) == pow(f, 2**20, x**30) + True + >>> f.pow_trunc(2**20, 5) + 132*x^4 + 113*x^3 + 36*x^2 + 48*x + 6 + """ + if e < 0: + raise ValueError("Exponent must be non-negative") + + cdef fmpz_mod_poly res + res = self.ctx.new_ctype_poly() + fmpz_mod_poly_pow_trunc(res.val, self.val, e, n, res.ctx.mod.val) + return res + def inflate(self, ulong n): r""" Returns the result of the polynomial `f = \textrm{self}` to @@ -1661,7 +1868,7 @@ cdef class fmpz_mod_poly(flint_poly): if not self.ctx.is_prime(): raise NotImplementedError("factor algorithm assumes that the modulus is prime") - + fmpz_mod_poly_factor_init(fac, self.ctx.mod.val) if algorithm == None: fmpz_mod_poly_factor(fac, self.val, self.ctx.mod.val) @@ -1673,7 +1880,7 @@ cdef class fmpz_mod_poly(flint_poly): fmpz_mod_poly_factor_berlekamp(fac, self.val, self.ctx.mod.val) else: raise ValueError("unknown algorithm") - + res = [0] * fac.num cdef fmpz_mod_poly u @@ -1706,7 +1913,7 @@ cdef class fmpz_mod_poly(flint_poly): if not self.ctx.is_prime(): raise NotImplementedError("factor algorithm assumes that the modulus is prime") - + fmpz_mod_poly_factor_init(fac, self.ctx.mod.val) fmpz_mod_poly_roots(fac, self.val, with_multiplicity, self.ctx.mod.val) res = [0] * fac.num From 31b5820c8a9eabb0b86d4d383586cb602e1b93bb Mon Sep 17 00:00:00 2001 From: Giacomo Pope Date: Mon, 12 Aug 2024 18:07:17 +0100 Subject: [PATCH 2/3] remove mulhigh --- src/flint/types/fmpz_mod_poly.pyx | 40 ------------------------------- 1 file changed, 40 deletions(-) diff --git a/src/flint/types/fmpz_mod_poly.pyx b/src/flint/types/fmpz_mod_poly.pyx index 6503350f..5830da03 100644 --- a/src/flint/types/fmpz_mod_poly.pyx +++ b/src/flint/types/fmpz_mod_poly.pyx @@ -1647,46 +1647,6 @@ cdef class fmpz_mod_poly(flint_poly): ) return res - def mul_high(self, other, slong start): - r""" - Returns from coefficients from ``start`` onwards of the multiplication of ``self`` with ``other`` - - # TODO!!! - # - # Is this expected behaviour? Seems weird. - # - >>> R = fmpz_mod_poly_ctx(163) - >>> f = R([2,3,5,7,11]) - >>> g = R([1,2,4,8,16]) - >>> f.mul_high(g, 0) - 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 + 45*x^3 + 19*x^2 + 7*x + 2 - >>> f.mul_high(g, 1) - 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 + 45*x^3 + 19*x^2 + 7*x - >>> f.mul_high(g, 2) - 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 + 45*x^3 + 19*x^2 - >>> f.mul_high(g, 3) - 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 + 45*x^3 - >>> f.mul_high(g, 4) - 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 - >>> f.mul_high(g, 5) - 13*x^8 + 37*x^7 + 17*x^6 + 138*x^5 + 101*x^4 + 45*x^3 + 19*x^2 + 7*x + 2 - """ - # Only allow multiplication with other fmpz_mod_poly - if not typecheck(other, fmpz_mod_poly): - raise TypeError("other polynomial must be of type fmpz_mod_poly") - - # Ensure the contexts match - other_c = other - if self.ctx != other_c.ctx: - raise ValueError("other polynomial's context does not match") - - cdef fmpz_mod_poly res - res = self.ctx.new_ctype_poly() - fmpz_mod_poly_mulhigh( - res.val, self.val, other_c.val, start, res.ctx.mod.val - ) - return res - def mul_mod(self, other, modulus): r""" Returns remainder of the product of ``self`` with ``other`` after reduction by ``modulus`` From b9690f6c6d399c0a94156d62b08f8e712589cbde Mon Sep 17 00:00:00 2001 From: Giacomo Pope Date: Mon, 12 Aug 2024 18:21:43 +0100 Subject: [PATCH 3/3] increase coverage --- src/flint/test/test_all.py | 31 +++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) diff --git a/src/flint/test/test_all.py b/src/flint/test/test_all.py index e1e957bf..1001ed3f 100644 --- a/src/flint/test/test_all.py +++ b/src/flint/test/test_all.py @@ -2247,6 +2247,37 @@ def test_fmpz_mod_poly(): l = [-1,-2,-3,-4,-5] assert [f(x) for x in l] == f.multipoint_evaluate(l) + # truncate things + + f = R_test.random_element() + g = R_test.random_element() + h = R_test.random_element() + x = R_test.gen() + + f_trunc = f % x**3 + + assert f.equal_trunc(f_trunc, 3) + assert not f.equal_trunc("A", 3) + assert not f.equal_trunc(f_cmp, 3) + + assert raises(lambda: f.add_trunc("A", 1), TypeError) + assert raises(lambda: f.add_trunc(f_cmp, 1), ValueError) + assert f.add_trunc(g, 3) == (f + g) % x**3 + + assert raises(lambda: f.sub_trunc("A", 1), TypeError) + assert raises(lambda: f.sub_trunc(f_cmp, 1), ValueError) + assert f.sub_trunc(g, 3) == (f - g) % x**3 + + assert raises(lambda: f.mul_low("A", h), TypeError) + assert raises(lambda: f.mul_low(g, "A"), TypeError) + assert f.mul_low(g, 3) == (f * g) % x**3 + + assert raises(lambda: f.mul_mod(f_cmp, h), ValueError) + assert raises(lambda: f.mul_mod(g, f_cmp), ValueError) + assert f.mul_mod(g, h) == (f * g) % h + + assert raises(lambda: f.pow_trunc(-1, 5), ValueError) + def test_fmpz_mod_mat(): c11 = flint.fmpz_mod_ctx(11)