-
Notifications
You must be signed in to change notification settings - Fork 92
/
NonDecreasingArray665.java
80 lines (73 loc) · 2.17 KB
/
NonDecreasingArray665.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/**
* Given an array with n integers, your task is to check if it could become
* non-decreasing by modifying at most 1 element.
*
* We define an array is non-decreasing if array[i] <= array[i + 1] holds for
* every i (1 <= i < n).
*
* Example 1:
* Input: [4,2,3]
* Output: True
* Explanation: You could modify the first 4 to 1 to get a non-decreasing array.
*
* Example 2:
* Input: [4,2,1]
* Output: False
* Explanation: You can't get a non-decreasing array by modify at most one element.
*
* Note: The n belongs to [1, 10,000].
*/
public class NonDecreasingArray665 {
public boolean checkPossibility(int[] nums) {
if (nums == null || nums.length <= 2) return true;
int min = nums[nums.length-1];
int n1 = 0;
for (int i=nums.length-2; i>=0; i--) {
if (min < nums[i]) {
n1++;
if (n1 == 2) break;
} else {
min = nums[i];
}
}
if (n1 < 2) return true;
int max = nums[0];
int n2 = 0;
for (int i=1; i<nums.length; i++) {
if (max > nums[i]) {
n2++;
if (n2 == 2) return false;
} else {
max = nums[i];
}
}
return true;
}
/**
* https://leetcode.com/problems/non-decreasing-array/discuss/106849/C++-Java-Clean-Code-6-liner-Without-Modifying-Input
*/
public boolean checkPossibility2(int[] a) {
int modified = 0;
for (int i = 1, prev = a[0]; i < a.length; i++) {
if (a[i] < prev) {
if (modified++ > 0) return false;
if (i - 2 >= 0 && a[i - 2] > a[i]) continue;
}
prev = a[i];
}
return true;
}
/**
* https://leetcode.com/problems/non-decreasing-array/solution/
*/
public boolean checkPossibility3(int[] a) {
int p = -1;
for (int i = 0; i<a.length-1; i++) {
if (a[i] > a[i+1]) {
if (p != -1) return false;
p = i;
}
}
return (p == -1 || p == 0 || p == a.length-2 || a[p-1] <= a[p+1] || a[p] <= a[p+2]);
}
}