-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathSplitArrayLargestSum410.java
129 lines (119 loc) · 3.43 KB
/
SplitArrayLargestSum410.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/**
* Given an array which consists of non-negative integers and an integer m, you
* can split the array into m non-empty continuous subarrays. Write an
* algorithm to minimize the largest sum among these m subarrays.
*
* Note:
* If n is the length of array, assume the following constraints are satisfied:
* 1 ≤ n ≤ 1000
* 1 ≤ m ≤ min(50, n)
*
* Examples:
* Input:
* nums = [7,2,5,10,8]
* m = 2
*
* Output:
* 18
*
* Explanation:
* There are four ways to split nums into two subarrays.
* The best way is to split it into [7,2,5] and [10,8],
* where the largest sum among the two subarrays is only 18.
*/
public class SplitArrayLargestSum410 {
// DP 1
public int splitArray(int[] nums, int m) {
int n = nums.length;
int[] sum = new int[n+1];
for (int j=1; j<=n; j++) sum[j] += sum[j-1] + nums[j-1];
int[][] dp = new int[m][n];
for (int j=0; j<n; j++) {
dp[0][j] = sum[j+1];
}
for (int i=1; i<m; i++) {
for (int j=i; j<n; j++) {
int s = Integer.MAX_VALUE;
for (int k=0; k<j; k++) {
s = Math.min(s, Math.max(dp[i-1][k], sum[j+1] - sum[k+1]));
}
dp[i][j] = s;
}
}
return dp[m-1][n-1];
}
// DP 2
public int splitArray2(int[] nums, int m) {
int n = nums.length;
int[] sum = new int[n+1];
for (int j=1; j<=n; j++) sum[j] += sum[j-1] + nums[j-1];
int[] dp = new int[n];
for (int j=0; j<n; j++) {
dp[j] = sum[j+1];
}
for (int i=1; i<m; i++) {
int[] tmp = new int[n];
for (int j=0; j<n; j++) tmp[j] = dp[j];
for (int j=i; j<n; j++) {
int s = Integer.MAX_VALUE;
for (int k=0; k<j; k++) {
s = Math.min(s, Math.max(tmp[k], sum[j+1] - sum[k+1]));
}
dp[j] = s;
}
}
return dp[n-1];
}
// DP 3
public int splitArray3(int[] nums, int m) {
int n = nums.length;
int[] sum = new int[n+1];
for (int j=1; j<=n; j++) sum[j] += sum[j-1] + nums[j-1];
int[][] dp = new int[2][n];
for (int j=0; j<n; j++) {
dp[0][j] = sum[j+1];
}
for (int i=1; i<m; i++) {
for (int j=i; j<n; j++) {
int s = Integer.MAX_VALUE;
for (int k=0; k<j; k++) {
s = Math.min(s, Math.max(dp[(i+1)%2][k], sum[j+1] - sum[k+1]));
}
dp[i%2][j] = s;
}
}
return dp[(m+1)%2][n-1];
}
// Binary Search on Value Range
public int splitArray4(int[] nums, int m) {
int n = nums.length;
long l = Long.MIN_VALUE;
long r = 0;
for (int j=0; j<n; j++) {
l = Math.max(l, nums[j]);
r += nums[j];
}
while (l < r) {
long mid = (l + r) / 2;
int cnt = count(nums, m, mid);
if (cnt > m) {
l = mid + 1;
} else {
r = mid;
}
}
return (int) l;
}
private int count(int[] nums, int m, long mid) {
int res = 0;
long sum = 0;
for (int n: nums) {
sum += n;
if (sum > mid) {
res++;
sum = n;
}
}
return res+1;
}
}