-
Notifications
You must be signed in to change notification settings - Fork 92
/
Triangle120.java
52 lines (48 loc) · 1.48 KB
/
Triangle120.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
* Given a triangle, find the minimum path sum from top to bottom. Each step
* you may move to adjacent numbers on the row below.
*
* For example, given the following triangle
*
* [
* [2],
* [3,4],
* [6,5,7],
* [4,1,8,3]
* ]
* The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
*
* Note:
* Bonus point if you are able to do this using only O(n) extra space, where
* n is the total number of rows in the triangle.
*/
public class Triangle120 {
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null || triangle.size() == 0) return 0;
int size = triangle.size();
List<Integer> sums = triangle.get(size - 1);
int i = size - 2;
while (i >= 0) {
List<Integer> curr = triangle.get(i);
int level = curr.size();
for (int j=0; j<level; j++) {
curr.set(j, curr.get(j) + Math.min(sums.get(j), sums.get(j+1)));
}
sums = curr;
i--;
}
return sums.get(0);
}
/**
* https://leetcode.com/problems/triangle/discuss/38724/7-lines-neat-Java-Solution
*/
public int minimumTotal2(List<List<Integer>> triangle) {
int[] A = new int[triangle.size()+1];
for(int i=triangle.size()-1;i>=0;i--){
for(int j=0;j<triangle.get(i).size();j++){
A[j] = Math.min(A[j],A[j+1])+triangle.get(i).get(j);
}
}
return A[0];
}
}