forked from Bill-Gray/find_orb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgauss.cpp
384 lines (335 loc) · 14.1 KB
/
gauss.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/* gauss.cpp: computes orbits using method of Gauss
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <stdio.h>
#include <stdint.h>
#include <math.h>
#include "watdefs.h"
#include "mpc_obs.h"
#include "afuncs.h"
FILE *fopen_ext( const char *filename, const char *permits); /* miscell.cpp */
double gauss_method( const OBSERVE FAR *obs1, const OBSERVE FAR *obs2,
const OBSERVE FAR *obs3, double *orbit, const double mu,
const int desired_soln); /* gauss.cpp */
double convenient_gauss( const OBSERVE FAR *obs, int n_obs, double *orbit,
const double mu, const int desired_soln); /* gauss.cpp */
int find_real_polynomial_roots( const double *poly, int poly_order,
double *real_roots); /* roots.cpp */
/* References are to Boulet, _Methods of Orbit Determination_. */
/* Higher-order terms in the f and g series are given in Boulet,
section 3.6.1 (program FANDG), starting at line 16010. */
#define INCLUDE_FIFTH
#define INCLUDE_SIXTH
static double dot_prod3( const double FAR *a, const double FAR *b)
{
return( a[0] * b[0] + a[1] * b[1] + a[2] * b[2]);
}
/* See p. 415, (10.13) and (10.14): we evaluate ten "(A x B) dot C"
expressions, so the following function is convenient: */
static double cross_then_dot( const double FAR *a, const double FAR *b,
const double FAR *c)
{
double xprod[3];
vector_cross_product( xprod, a, b);
return( dot_prod3( xprod, c));
}
#define GAUSS_K .01720209895
#define P_MAX 10000.
double gauss_method( const OBSERVE FAR *obs1, const OBSERVE FAR *obs2,
const OBSERVE FAR *obs3, double *orbit, const double mu,
const int desired_soln)
{
double tau1 = GAUSS_K * (obs1->jd - obs2->jd);
double tau3 = GAUSS_K * (obs3->jd - obs2->jd);
double tau = tau3 - tau1, rval = 0.;
const double pi = 3.1415926535897932384626433832795028841971693993751058209749445923;
/* See p. 415, (10.13): */
const double d11 = cross_then_dot( obs2->vect, obs1->obs_posn, obs3->vect);
const double d12 = cross_then_dot( obs2->vect, obs2->obs_posn, obs3->vect);
const double d13 = cross_then_dot( obs2->vect, obs3->obs_posn, obs3->vect);
const double d21 = cross_then_dot( obs1->obs_posn, obs1->vect, obs3->vect);
const double d22 = cross_then_dot( obs2->obs_posn, obs1->vect, obs3->vect);
const double d23 = cross_then_dot( obs3->obs_posn, obs1->vect, obs3->vect);
const double d31 = cross_then_dot( obs1->obs_posn, obs2->vect, obs1->vect);
const double d32 = cross_then_dot( obs2->obs_posn, obs2->vect, obs1->vect);
const double d33 = cross_then_dot( obs3->obs_posn, obs2->vect, obs1->vect);
/* See p. 415, (10.14): */
const double d0 = cross_then_dot( obs1->vect, obs2->vect, obs3->vect);
/* See p. 417, (10.20): */
const double a1 = tau3 / tau, a3 = -tau1 / tau;
const double b1 = a1 * (tau * tau - tau3 * tau3) / 6.;
const double b3 = a3 * (tau * tau - tau1 * tau1) / 6.;
/* See p. 417, (10.22): */
const double big_a = -(a1 * d21 - d22 + a3 * d23) / d0;
const double big_b = -(b1 * d21 + b3 * d23) / d0;
/* See p. 417, (10.24): */
const double big_e = 2. * dot_prod3( obs2->obs_posn, obs2->vect);
const double big_f = dot_prod3( obs2->obs_posn, obs2->obs_posn);
double f1 = 0., g1 = 0., f3 = 0., g3 = 0.;
/* Set up the equation of Lagrange, a degree-8 polynomial.
See p. 417, (10.26). */
double poly[9], roots[8], r2;
int i, n_roots, iteration, keep_iterating = 1;
extern int process_count;
FILE *ofile = (process_count? NULL : fopen_ext( "gauss.out", "tfcwb"));
if( ofile)
{
setvbuf( ofile, NULL, _IONBF, 0);
fprintf( ofile, "jds: %f %f %f; d0 = %g\n", obs1->jd, obs2->jd, obs3->jd, d0);
fprintf( ofile, "Loc1: %f %f\n", obs1->ra * 180. / pi, obs1->dec * 180. / pi);
fprintf( ofile, "Loc2: %f %f\n", obs2->ra * 180. / pi, obs2->dec * 180. / pi);
fprintf( ofile, "Loc3: %f %f\n", obs3->ra * 180. / pi, obs3->dec * 180. / pi);
}
if( fabs( d0) < 1e-10 || !tau1 || !tau3)
{
if( ofile)
fclose( ofile);
return( 0.);
}
for( i = 0; i < 8; i++)
poly[i] = 0.;
poly[8] = 1.;
poly[6] = -(big_a * (big_a + big_e) + big_f);
poly[3] = -mu * big_b * (2. * big_a + big_e);
poly[0] = -mu * mu * big_b * big_b;
if( ofile)
fprintf( ofile, "poly: x^8 + %f x^6 + %f x^3 + %f\n",
poly[6], poly[3], poly[0]);
n_roots = find_real_polynomial_roots( poly, 8, roots); /* roots.cpp */
if( ofile)
{
fprintf( ofile, "\n%d roots found:\n", n_roots);
for( i = 0; i < n_roots; i++)
fprintf( ofile, "Root %d: %f\n", i, roots[i]);
}
/* Toss negative roots and those leading to negative distances: */
for( i = 0; i < n_roots; i++)
if( roots[i] < 0.
|| big_a + mu * big_b / (roots[i] * roots[i] * roots[i]) < 0.)
{
roots[i] = roots[n_roots - 1];
i--;
n_roots--;
}
if( ofile)
{
fprintf( ofile, "%d roots survive\n", n_roots);
for( i = 0; i < n_roots; i++)
fprintf( ofile, "'surviving' root %d: %f\n", i, roots[i]);
}
if( desired_soln >= n_roots)
{
if( ofile)
fclose( ofile);
return( 0.);
}
if( desired_soln == -1) /* we're supplying r2 */
r2 = orbit[0];
else
r2 = roots[desired_soln];
if( ofile)
fprintf( ofile, "Initial rho %f\n", r2);
for( iteration = 0; keep_iterating && iteration < 96; iteration++)
{
/* See p. 419, (10.28), (10.27): */
const double u2 = mu / (r2 * r2 * r2);
const double tau1_squared = tau1 * tau1, tau3_squared = tau3 * tau3;
double f1_new = 1. - u2 * tau1_squared / 2.;
double f3_new = 1. - u2 * tau3_squared / 2.;
double g1_new = tau1 * (1. - u2 * tau1_squared / 6.);
double g3_new = tau3 * (1. - u2 * tau3_squared / 6.);
double f1_g3_minus_f3_g1, c1, c2, c3, p1, p2, p3, d1, d3;
if( iteration) /* we can refine the above; see (10.15), (3.80) */
{
const double z2 = dot_prod3( orbit, orbit + 3) / (r2 * r2);
const double zs = z2 * z2;
const double u2_z2_tau1_cubed = u2 * z2 * tau1_squared * tau1;
const double u2_z2_tau3_cubed = u2 * z2 * tau3_squared * tau3;
const double q = dot_prod3( orbit + 3, orbit + 3) / (r2 * r2) - u2;
const double quartic = u2 * (3 * q - 15. * zs + u2) / 24.;
#ifdef INCLUDE_FIFTH
const double quint_f = u2 * (3 * q + 7. * zs - u2) * z2 / 8.;
const double quint_g = u2 * (9 * q - 45. * zs + u2) / 120.;
#ifdef INCLUDE_SIXTH
const double sixth_f = u2 * (zs * (630 * q + 210 * u2 - 945 * zs)
- u2 * (24 * q + u2) - 45 * q * q) / 720.;
const double sixth_g = u2 * z2 * (210 * zs - 90 * q - 15 * u2) / 360.;
#endif
#endif
const double tau1_fourth = tau1_squared * tau1_squared;
const double tau3_fourth = tau3_squared * tau3_squared;
f1_new += u2_z2_tau1_cubed / 2. + tau1_fourth * quartic;
f3_new += u2_z2_tau3_cubed / 2. + tau3_fourth * quartic;
g1_new += u2_z2_tau1_cubed * tau1 / 4.;
g3_new += u2_z2_tau3_cubed * tau3 / 4.;
#ifdef INCLUDE_FIFTH
f1_new += quint_f * tau1_fourth * tau1;
f3_new += quint_f * tau3_fourth * tau3;
g1_new += quint_g * tau1_fourth * tau1;
g3_new += quint_g * tau3_fourth * tau3;
#ifdef INCLUDE_SIXTH
f1_new += sixth_f * tau1_fourth * tau1_squared;
f3_new += sixth_f * tau3_fourth * tau3_squared;
g1_new += sixth_g * tau1_fourth * tau1_squared;
g3_new += sixth_g * tau3_fourth * tau3_squared;
#endif
#endif
}
if( iteration && iteration < 4)
{
f1 = (f1 + f1_new) / 2.; /* for stability reasons, average */
f3 = (f3 + f3_new) / 2.; /* the new f1, f3, g1, and g3 with */
g1 = (g1 + g1_new) / 2.; /* values from previous iteration */
g3 = (g3 + g3_new) / 2.;
}
else /* on first iteration, we don't average f1, f3, g1, g3 */
{ /* with the values from previous iterations... because */
f1 = f1_new; /* there _were_ no previous iterations */
f3 = f3_new;
g1 = g1_new;
g3 = g3_new;
}
/* See p. 419, (10.29): */
f1_g3_minus_f3_g1 = f1 * g3 - f3 * g1;
c1 = g3 / f1_g3_minus_f3_g1;
c2 = -1.;
c3 = -g1 / f1_g3_minus_f3_g1;
/* See p. 419, (10.30): */
p1 = (c1 * d11 + c2 * d12 + c3 * d13) / (c1 * d0);
p2 = (c1 * d21 + c2 * d22 + c3 * d23) / (c2 * d0);
p3 = (c1 * d31 + c2 * d32 + c3 * d33) / (c3 * d0);
/* See p. 420, (10.33): */
d1 = -f3 / f1_g3_minus_f3_g1;
d3 = f1 / f1_g3_minus_f3_g1;
if( ofile)
fprintf( ofile, "%d: r2 = %f\np1 = %f p2 = %f p3 = %f\n",
iteration, r2, p1, p2, p3);
p1 = fabs( p1);
p2 = fabs( p2);
p3 = fabs( p3);
if( p1 < 0. || p2 < 0. || p3 < 0.
|| p1 > P_MAX || p2 > P_MAX || p3 > P_MAX)
{
rval = 0.; /* iterations diverging */
keep_iterating = 0;
}
else
{
double r2_new_squared = 0., new_r2;
const double tolerance = 1e-5;
for( i = 0; i < 3; i++)
{
const double r1_component = obs1->obs_posn[i] + p1 * obs1->vect[i];
const double r2_component = obs2->obs_posn[i] + p2 * obs2->vect[i];
const double r3_component = obs3->obs_posn[i] + p3 * obs3->vect[i];
orbit[i] = r2_component;
orbit[i + 3] = d1 * r1_component + d3 * r3_component;
rval = p2;
r2_new_squared += r2_component * r2_component;
}
new_r2 = sqrt( r2_new_squared);
if( fabs( new_r2 - r2) < tolerance)
keep_iterating = 0;
r2 = new_r2;
}
/* compute better tau values, including light time lag: */
tau1 = GAUSS_K * (obs1->jd - obs2->jd - (p1 - p2) / AU_PER_DAY);
tau3 = GAUSS_K * (obs3->jd - obs2->jd - (p3 - p2) / AU_PER_DAY);
/* tau = tau3 - tau1; We don't actually use the recomputed value */
if( ofile)
fprintf( ofile, "state vect: %f %f %f %f %f %f\n",
orbit[0], orbit[1], orbit[2],
orbit[3], orbit[4], orbit[5]);
}
for( i = 3; i < 6; i++)
orbit[i] *= GAUSS_K;
if( ofile)
{
fprintf( ofile, "rval = %f\n", rval);
fclose( ofile);
}
return( rval);
}
/* If you have more than three observations, you have the puzzle of
figuring out which three should be used in the method of Gauss. The
usual reasoning is that they should have the greatest deviation from
a great circle, i.e., the value of d0 in the above function should
be maximized.
You _could_ do this by looking at all possible subsets of three
observations. If you have (say) a hundred observations, you'll be
looking at 100 * 99 * 98 / 6 = 161700 possible triplets, which seems
like a bit much. At present, I just assume the first and last should
be used, and look for the intervening observation that maximizes
d0 among them. It might actually make slightly more sense to pick
a few pairs at pseudo-random, then look for a third observation
that maximizes d0... you'd have a bit more processing time, but also
some chance of improving d0. */
static double find_best_obs_for_gauss( const OBSERVE FAR *obs,
const unsigned n_obs, unsigned *idx)
{
double max_d0 = 0.;
unsigned i;
double xprod[3];
idx[0] = 0;
idx[1] = 1; /* mostly just to avoid an uninitialized var warning */
idx[2] = n_obs - 1;
vector_cross_product( xprod, obs[idx[0]].vect, obs[idx[2]].vect);
for( i = 1; i < n_obs - 1; i++)
if( obs[i].is_included)
{
const double d0 = fabs( dot_prod3( xprod, obs[i].vect));
if( max_d0 < d0)
{
max_d0 = d0;
idx[1] = i;
}
}
return( max_d0);
}
/* The following function is, as the name suggests, "just for the sake
of convenience." Given an array of observations, it finds the first
and last valid observations. Then it looks for the valid observation
that comes closest to the mid-time of the end points, and calls the
above function with the start, end, and middle observations. */
double convenient_gauss( const OBSERVE FAR *obs, int n_obs, double *orbit,
const double mu, const int desired_soln)
{
double p2, old_orbit[6], d0;
unsigned obs_idx[3], i;
extern double uncertainty_parameter;
uncertainty_parameter = 99.;
while( n_obs && !obs->is_included)
{
obs++;
n_obs--;
}
while( n_obs && !obs[n_obs - 1].is_included)
n_obs--;
if( n_obs < 3)
return( 0.);
d0 = find_best_obs_for_gauss( obs, n_obs, obs_idx);
if( !d0) /* either there weren't three valid obs, or */
return( 0.); /* there weren't three that were non-coplanar */
for( i = 0; i < 6; i++)
old_orbit[i] = orbit[i];
p2 = gauss_method( obs + obs_idx[0], obs + obs_idx[1],
obs + obs_idx[2], orbit, mu, desired_soln);
if( p2 < .001) /* no valid soln found */
{
for( i = 0; i < 6; i++)
orbit[i] = old_orbit[i];
return( 0.);
}
return( obs[obs_idx[1]].jd - p2 / AU_PER_DAY);
}