-
Notifications
You must be signed in to change notification settings - Fork 2
/
datasets.py
504 lines (418 loc) · 18.7 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import os
from sys import platform
from PIL import Image
import numpy as np
import torch
from torchvision import datasets, transforms
import socket
from torchvision.datasets.utils import check_integrity, download_and_extract_archive
from torchvision.datasets.vision import VisionDataset
import pickle
from collections import defaultdict
from torch.utils.data import Dataset
from tqdm.autonotebook import tqdm
training_datasets = ['C10', 'C20', 'C100', 'STL10', 'TINY']
def get_encoder_size(dataset_name):
if dataset_name in training_datasets[:3]:
return 32
if dataset_name == training_datasets[-2]:
return 96
if dataset_name == training_datasets[-1]:
return 64
raise RuntimeError("Error get encoder size, unknown setup size: {}".format(dataset_name))
def get_dataset(dataset_name):
dataset_name = dataset_name.upper()
if dataset_name in training_datasets:
return dataset_name
raise KeyError("Unknown dataset '" + dataset_name + "'. Must be one of "
+ ', '.join([name for name in training_datasets]))
class Transforms:
def __init__(self, nmb_crops, size_crops, min_scale_crops, max_scale_crops, mu, std):
assert len(size_crops) == len(nmb_crops)
assert len(min_scale_crops) == len(nmb_crops)
assert len(max_scale_crops) == len(nmb_crops)
flip = transforms.RandomHorizontalFlip(p=0.5)
normalize = transforms.Normalize(mean=mu, std=std)
col_jitter = transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8)
rnd_gray = transforms.RandomGrayscale(p=0.25)
trans = []
for i in range(len(size_crops)):
randomresizedcrop = transforms.RandomResizedCrop(
size_crops[i], scale=(min_scale_crops[i], max_scale_crops[i]))
trans.extend([transforms.Compose([
flip, randomresizedcrop, col_jitter, rnd_gray, transforms.ToTensor(), normalize])] * nmb_crops[i])
self.train_transform = trans
self.test_transform = transforms.Compose([transforms.ToTensor(), normalize])
def __call__(self, inp):
multi_crops = list(map(lambda trans: trans(inp), self.train_transform))
return multi_crops, self.test_transform(inp)
def build_dataset(dataset, batch_size, nmb_workers, nmb_crops, size_crops, min_scale_crops, max_scale_crops, path):
if dataset == training_datasets[0]:
num_classes = 10
mu = [0.4914, 0.4822, 0.4465]
std = [0.2023, 0.1994, 0.2010]
train_transform = Transforms(nmb_crops, size_crops, min_scale_crops, max_scale_crops, mu, std)
test_transform = train_transform.test_transform
train_dataset = CIFAR10(root=path, train=True, transform=train_transform, download=True)
test_dataset = CIFAR10(root=path, train=False, transform=test_transform, download=True)
elif dataset in training_datasets[1:3]:
num_classes = 20 if dataset == training_datasets[1] else 100
coarse = True if dataset == training_datasets[1] else False
mu = [0.5071, 0.4867, 0.4408]
std = [0.2675, 0.2565, 0.2761]
train_transform = Transforms(nmb_crops, size_crops, min_scale_crops, max_scale_crops, mu, std)
test_transform = train_transform.test_transform
train_dataset = CIFAR100(root=path, train=True, transform=train_transform, download=True, c100_coarse=coarse)
test_dataset = CIFAR100(root=path, train=False, transform=test_transform, download=True, c100_coarse=coarse)
elif dataset == training_datasets[-2]:
num_classes = 10
mu = [0.43, 0.42, 0.39]
std = [0.27, 0.26, 0.27]
train_transform = Transforms(nmb_crops, size_crops, min_scale_crops, max_scale_crops, mu, std)
test_transform = train_transform.test_transform
train_dataset = STL10(root=path, split='train+unlabeled', transform=train_transform, download=True)
test_dataset = STL10(root=path, split='test', transform=test_transform, download=True)
elif dataset == training_datasets[-1]:
num_classes = 200
mu = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
train_transform = Transforms(nmb_crops, size_crops, min_scale_crops, max_scale_crops, mu, std)
test_transform = train_transform.test_transform
train_dataset = TinyImageNetDataset(path, transform=train_transform, download=False, preload=True)
test_dataset = TinyImageNetDataset(path, mode='val', transform=test_transform, download=False,
preload=False)
else:
raise RuntimeError("Error not supported dataset {}".format(dataset))
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True,
pin_memory=True, drop_last=True, num_workers=nmb_workers)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True,
pin_memory=True, drop_last=False, num_workers=nmb_workers)
return train_loader, test_loader, num_classes
'''
Overwritting Pytorch methods of CIFAR-10 and CIFAR-100 for being able to provide the coarse labels (CIFAR-20)
Additionally, all below vision datasets return the index of the iterating instance for reference only
'''
class CIFAR10(VisionDataset):
"""`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
Args:
root (string): Root directory of dataset where directory
``cifar-10-batches-py`` exists or will be saved to if download is set to True.
train (bool, optional): If True, creates dataset from training set, otherwise
creates from test set.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
base_folder = 'cifar-10-batches-py'
url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
filename = "cifar-10-python.tar.gz"
tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
train_list = [
['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
['data_batch_4', '634d18415352ddfa80567beed471001a'],
['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
]
test_list = [
['test_batch', '40351d587109b95175f43aff81a1287e'],
]
meta = {
'filename': 'batches.meta',
'key': 'label_names',
'md5': '5ff9c542aee3614f3951f8cda6e48888',
}
def __init__(self, root, train=True, transform=None, target_transform=None,
download=False, c100_coarse=True):
super(CIFAR10, self).__init__(root, transform=transform, target_transform=target_transform)
self.train = train # training set or test set
if download:
self.download()
if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
if self.train:
downloaded_list = self.train_list
else:
downloaded_list = self.test_list
self.data = []
self.targets = []
# now load the picked numpy arrays
for file_name, checksum in downloaded_list:
file_path = os.path.join(self.root, self.base_folder, file_name)
with open(file_path, 'rb') as f:
entry = pickle.load(f, encoding='latin1')
self.data.append(entry['data'])
if 'labels' in entry:
self.targets.extend(entry['labels'])
else:
if c100_coarse is True:
self.targets.extend(entry['coarse_labels'])
self.meta['key'] = self.meta['key2']
else:
self.targets.extend(entry['fine_labels'])
self.meta['key'] = self.meta['key1']
self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
self._load_meta()
def _load_meta(self):
path = os.path.join(self.root, self.base_folder, self.meta['filename'])
if not check_integrity(path, self.meta['md5']):
raise RuntimeError('Dataset metadata file not found or corrupted.' +
' You can use download=True to download it')
with open(path, 'rb') as infile:
data = pickle.load(infile, encoding='latin1')
self.classes = data[self.meta['key']]
self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.targets[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
def __len__(self):
return len(self.data)
def _check_integrity(self):
root = self.root
for fentry in (self.train_list + self.test_list):
filename, md5 = fentry[0], fentry[1]
fpath = os.path.join(root, self.base_folder, filename)
if not check_integrity(fpath, md5):
return False
return True
def download(self):
if self._check_integrity():
print('Files already downloaded and verified')
return
download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
def extra_repr(self):
return "Split: {}".format("Train" if self.train is True else "Test")
class CIFAR100(CIFAR10):
"""`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
This is a subclass of the `CIFAR10` Dataset.
"""
base_folder = 'cifar-100-python'
url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
filename = "cifar-100-python.tar.gz"
tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
train_list = [
['train', '16019d7e3df5f24257cddd939b257f8d'],
]
test_list = [
['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
]
meta = {
'filename': 'meta',
'key1': 'fine_label_names',
'key2': 'coarse_label_names',
'md5': '7973b15100ade9c7d40fb424638fde48',
}
class STL10(datasets.STL10):
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
if self.labels is not None:
img, target = self.data[index], int(self.labels[index])
else:
img, target = self.data[index], None
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(np.transpose(img, (1, 2, 0)))
# img = img.crop((8, 8, 88, 88))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
def download_and_unzip(URL, root_dir):
error_message = "Download is not yet implemented. Please, go to {URL} urself."
raise NotImplementedError(error_message.format(URL))
def _add_channels(img):
if len(img.getbands()) == 1: # third axis is the channels
img = np.expand_dims(np.array(img), -1)
img = np.tile(img, (1, 1, 3))
img = Image.fromarray(img)
return img
"""Creates a paths datastructure for the tiny imagenet.
Args:
root_dir: Where the data is located
download: Download if the data is not there
Members:
label_id:
ids:
nit_to_words:
data_dict:
"""
class TinyImageNetPaths:
def __init__(self, root_dir, download=False):
if download:
download_and_unzip('http://cs231n.stanford.edu/tiny-imagenet-200.zip',
root_dir)
train_path = os.path.join(root_dir, 'train')
val_path = os.path.join(root_dir, 'val')
test_path = os.path.join(root_dir, 'test')
wnids_path = os.path.join(root_dir, 'wnids.txt')
words_path = os.path.join(root_dir, 'words.txt')
self._make_paths(train_path, val_path, test_path,
wnids_path, words_path)
def _make_paths(self, train_path, val_path, test_path,
wnids_path, words_path):
self.ids = []
with open(wnids_path, 'r') as idf:
for nid in idf:
nid = nid.strip()
self.ids.append(nid)
self.nid_to_words = defaultdict(list)
with open(words_path, 'r') as wf:
for line in wf:
nid, labels = line.split('\t')
labels = list(map(lambda x: x.strip(), labels.split(',')))
self.nid_to_words[nid].extend(labels)
self.paths = {
'train': [], # [img_path, id, nid, box]
'val': [], # [img_path, id, nid, box]
'test': [] # img_path
}
# Get the test paths
self.paths['test'] = list(map(lambda x: os.path.join(test_path, x),
os.listdir(test_path)))
# Get the validation paths and labels
with open(os.path.join(val_path, 'val_annotations.txt')) as valf:
for line in valf:
fname, nid, x0, y0, x1, y1 = line.split()
fname = os.path.join(val_path, 'images', fname)
bbox = int(x0), int(y0), int(x1), int(y1)
label_id = self.ids.index(nid)
self.paths['val'].append((fname, label_id, nid, bbox))
# Get the training paths
train_nids = os.listdir(train_path)
for nid in train_nids:
anno_path = os.path.join(train_path, nid, nid + '_boxes.txt')
imgs_path = os.path.join(train_path, nid, 'images')
label_id = self.ids.index(nid)
with open(anno_path, 'r') as annof:
for line in annof:
fname, x0, y0, x1, y1 = line.split()
fname = os.path.join(imgs_path, fname)
bbox = int(x0), int(y0), int(x1), int(y1)
self.paths['train'].append((fname, label_id, nid, bbox))
"""Datastructure for the tiny image dataset.
Args:
root_dir: Root directory for the data
mode: One of "train", "test", or "val"
preload: Preload into memory
load_transform: Transformation to use at the preload time
transform: Transformation to use at the retrieval time
download: Download the dataset
Members:
tinp: Instance of the TinyImageNetPaths
img_data: Image data
label_data: Label data
"""
class TinyImageNetDataset(Dataset):
def __init__(self, root_dir, mode='train', preload=True, load_transform=None,
transform=None, download=False, max_samples=None):
tinp = TinyImageNetPaths(root_dir, download)
self.mode = mode
self.label_idx = 1 # from [image, id, nid, box]
self.preload = preload
self.transform = transform
self.transform_results = dict()
self.IMAGE_SHAPE = (64, 64, 3)
self.img_data = []
self.label_data = []
self.max_samples = max_samples
self.samples = tinp.paths[mode]
self.samples_num = len(self.samples)
if self.max_samples is not None:
self.samples_num = min(self.max_samples, self.samples_num)
self.samples = np.random.permutation(self.samples)[:self.samples_num]
if self.preload:
load_desc = "Preloading {} data...".format(mode)
self.img_data = {} # np.zeros((self.samples_num,) + self.IMAGE_SHAPE, dtype=np.float32)
self.label_data = np.zeros((self.samples_num,), dtype=np.int)
for idx in tqdm(range(self.samples_num), desc=load_desc):
s = self.samples[idx]
# img = imageio.imread(s[0])
img_ = Image.open(s[0])
img = img_.copy()
img = _add_channels(img)
img_.close()
self.img_data[idx] = img
if mode != 'test':
self.label_data[idx] = s[self.label_idx]
if load_transform:
for lt in load_transform:
result = lt(self.img_data, self.label_data)
self.img_data, self.label_data = result[:2]
if len(result) > 2:
self.transform_results.update(result[2])
def __len__(self):
return self.samples_num
def __getitem__(self, idx):
if self.preload:
img = self.img_data[idx]
target = None if self.mode == 'test' else self.label_data[idx]
else:
s = self.samples[idx]
# img = imageio.imread(s[0])
img = Image.open(s[0])
img = _add_channels(img)
target = None if self.mode == 'test' else s[self.label_idx]
# img = img.crop((4, 4, 60, 60))
# to return a PIL Image
# img = Image.fromarray(np.transpose(img, (1, 2, 0)))
if self.transform:
img = self.transform(img)
return img, target, idx
dir_structure_help = r"""
TinyImageNetPath
├── test
│ └── images
│ ├── test_0.JPEG
│ ├── t...
│ └── ...
├── train
│ ├── n01443537
│ │ ├── images
│ │ │ ├── n01443537_0.JPEG
│ │ │ ├── n...
│ │ │ └── ...
│ │ └── n01443537_boxes.txt
│ ├── n01629819
│ │ ├── images
│ │ │ ├── n01629819_0.JPEG
│ │ │ ├── n...
│ │ │ └── ...
│ │ └── n01629819_boxes.txt
│ ├── n...
│ │ ├── images
│ │ │ ├── ...
│ │ │ └── ...
├── val
│ ├── images
│ │ ├── val_0.JPEG
│ │ ├── v...
│ │ └── ...
│ └── val_annotations.txt
├── wnids.txt
└── words.txt
"""