Skip to content

Latest commit

 

History

History
300 lines (276 loc) · 6.76 KB

README.md

File metadata and controls

300 lines (276 loc) · 6.76 KB

Disentangled Representation Learning for Text-Video Retrieval

MSR-VTT DiDeMo

This is a PyTorch implementation of the paper Disentangled Representation Learning for Text-Video Retrieval:

@Article{DRLTVR2022,
  author  = {Qiang Wang and Yanhao Zhang and Yun Zheng and Pan Pan and Xian-Sheng Hua},
  journal = {arXiv:2203.07111},
  title   = {Disentangled Representation Learning for Text-Video Retrieval},
  year    = {2022},
}

Catalog

  • Setup
  • Fine-tuning code
  • Visualization demo

Setup

Setup code environment

git clone https://github.com/foolwood/DRL.git
cd DRL
conda create -n drl python=3.9
conda activate drl
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 -f https://download.pytorch.org/whl/torch_stable.html

Download CLIP Model (as pretraining)

cd tvr/models
wget https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt
# wget https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt
# wget https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt

Download Datasets

cd data/MSR-VTT
wget https://www.robots.ox.ac.uk/~maxbain/frozen-in-time/data/MSRVTT.zip ; unzip MSRVTT.zip
mv MSRVTT/videos/all ./videos ; mv MSRVTT/annotation/MSR_VTT.json ./anns/MSRVTT_data.json

Fine-tuning code

  • Train on MSR-VTT 1k.
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 \
main.py --do_train 1 --workers 8 --n_display 50 \
--epochs 5 --lr 1e-4 --coef_lr 1e-3 --batch_size 128 --batch_size_val 128 \
--anno_path data/MSR-VTT/anns --video_path data/MSR-VTT/videos --datatype msrvtt \
--max_words 32 --max_frames 12 --video_framerate 1 \
--base_encoder ViT-B/32 --agg_module seqTransf \
--interaction wti --wti_arch 2 --cdcr 3 --cdcr_alpha1 0.11 --cdcr_alpha2 0.0 --cdcr_lambda 0.001 \
--output_dir ckpts/ckpt_msrvtt_wti_cdcr

Reproduce the ablation experiments scripts

configs
feature gpus Text-Video Video-Text train time (h)
R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR
CLIP4Clip ViT/B-32 4 42.8 72.1 81.4 2.0 16.3 44.1 70.5 80.5 2.0 11.8 10.5
zero-shot ViT/B-32 4 31.1 53.7 63.4 4.0 41.6 26.5 50.1 61.7 5.0 39.9 -
Interaction
DP+None ViT/B-32 4 42.9 70.6 81.4 2.0 15.4 43.0 71.1 81.1 2.0 11.8 2.5
DP+seqTransf ViT/B-32 4 42.8 71.1 81.1 2.0 15.6 44.1 70.9 80.9 2.0 11.7 2.6
XTI+None ViT/B-32 4 40.5 71.1 82.6 2.0 13.6 42.7 70.8 80.2 2.0 12.5 14.3
XTI+seqTransf ViT/B-32 4 42.4 71.3 80.9 2.0 15.2 40.1 69.2 79.6 2.0 15.8 16.8
TI+seqTransf ViT/B-32 4 44.8 73.0 82.2 2.0 13.4 42.6 72.7 82.8 2.0 9.1 2.6
WTI+seqTransf ViT/B-32 4 46.6 73.4 83.5 2.0 13.0 45.4 73.4 81.9 2.0 9.2 2.6
Channel DeCorrelation Regularization
DP+seqTransf+CDCR ViT/B-32 4 43.9 71.1 81.2 2.0 15.3 42.3 70.3 81.1 2.0 11.4 2.6
TI+seqTransf+CDCR ViT/B-32 4 45.8 73.0 81.9 2.0 12.8 43.3 71.8 82.7 2.0 8.9 2.6
WTI+seqTransf+CDCR ViT/B-32 4 47.6 73.4 83.3 2.0 12.8 45.1 72.9 83.5 2.0 9.2 2.6

Note: the performances are slight boosts due to new hyperparameters.

Visualization demo

Run our visualization demo using matplotlib (no GPU needed):

License

See LICENSE for details.

Acknowledgments

Our code is partly based on CLIP4Clip.