Skip to content

Commit

Permalink
add Michael Walter's implementation of the BKZ simulator
Browse files Browse the repository at this point in the history
  • Loading branch information
malb committed Apr 28, 2018
1 parent aae178a commit 1ab6182
Showing 1 changed file with 129 additions and 0 deletions.
129 changes: 129 additions & 0 deletions src/fpylll/tools/bkz_simulator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# -*- coding: utf-8 -*-
"""
BKZ simulation algorithm as proposed in
- Chen, Y., & Nguyen, P. Q. (2011). BKZ 2.0: better lattice security estimates. In D. H. Lee, & X.
Wang, ASIACRYPT~2011 (pp. 1–20). : Springer, Heidelberg.
.. moduleauthor:: Michael Walter <fplll-devel@googlegroups.com> (2014)
.. moduleauthor:: Martin R. Albrecht <fplll-devel@googlegroups.com> (2018)
"""
from copy import copy
from math import log, sqrt, gamma, pi
from collections import OrderedDict

from fpylll.tools.quality import basis_quality
from fpylll.tools.bkz_stats import pretty_dict
from fpylll.fplll.bkz import BKZ
from fpylll.fplll.integer_matrix import IntegerMatrix
from fpylll.fplll.gso import MatGSO, GSO

# This program is free software: you can redistribute it and/or modify it under the terms of the GNU
# General Public License as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
# even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.

rk = ( 0.789527997160000, 0.780003183804613, 0.750872218594458, 0.706520454592593, 0.696345241018901, # noqa
0.660533841808400, 0.626274718790505, 0.581480717333169, 0.553171463433503, 0.520811087419712,
0.487994338534253, 0.459541470573431, 0.414638319529319, 0.392811729940846, 0.339090376264829,
0.306561491936042, 0.276041187709516, 0.236698863270441, 0.196186341673080, 0.161214212092249,
0.110895134828114, 0.0678261623920553, 0.0272807162335610, -0.0234609979600137, -0.0320527224746912,
-0.0940331032784437, -0.129109087817554, -0.176965384290173, -0.209405754915959, -0.265867993276493,
-0.299031324494802, -0.349338597048432, -0.380428160303508, -0.427399405474537, -0.474944677694975,
-0.530140672818150, -0.561625221138784, -0.612008793872032, -0.669011014635905, -0.713766731570930,
-0.754041787011810, -0.808609696192079, -0.859933249032210, -0.884479963601658, -0.886666930030433)


def simulate(r, param):
"""
BKZ simulation algorithm as proposed by Chen and Nguyen in "BKZ 2.0: Better Lattice Security
Estimates". Returns the reduced squared norms of the GSO vectors of the basis and the number of
BKZ tours simulated. This version terminates when no substantial progress is made anymore or at
most ``max_loops`` tours were simulated. If no ``max_loops`` is given, at most ``d`` tours are
performed, where ``d`` is the dimension of the lattice.
:param r: squared norms of the GSO vectors of the basis.
:param param: BKZ parameters
EXAMPLE:
>>> from fpylll import IntegerMatrix, GSO, LLL, FPLLL, BKZ
>>> FPLLL.set_random_seed(1337)
>>> A = LLL.reduction(IntegerMatrix.random(100, "qary", bits=30, k=50))
>>> M = GSO.Mat(A)
>>> from fpylll.tools.bkz_simulator import simulate
>>> _ = simulate(M, BKZ.Param(block_size=40, max_loops=4, flags=BKZ.VERBOSE))
{"i": 0, "r_0": 2^33.3, "r_0/gh": 6.110565, "rhf": 1.018340, "/": -0.07013, "hv/hv": 2.424131}
{"i": 1, "r_0": 2^32.7, "r_0/gh": 4.018330, "rhf": 1.016208, "/": -0.06161, "hv/hv": 2.156298}
{"i": 2, "r_0": 2^32.3, "r_0/gh": 2.973172, "rhf": 1.014679, "/": -0.05745, "hv/hv": 2.047014}
{"i": 3, "r_0": 2^32.1, "r_0/gh": 2.583479, "rhf": 1.013966, "/": -0.05560, "hv/hv": 2.000296}
"""

if isinstance(r, IntegerMatrix):
r = GSO.Mat(r)
if isinstance(r, MatGSO):
r.update_gso()
r = r.r()

d = len(r)

# code uses log2 of norms, FPLLL uses squared norms
r = map(lambda x: log(x, 2)/2., r)

r1 = copy(r)
r2 = copy(r)
c = [rk[-i] - sum(rk[-i:])/i for i in range(1, 46)]
c += [log(gamma(beta/2.+1)**(1./beta)/(sqrt(pi)), 2) for beta in range(46, param.block_size + 1)]

if param.max_loops:
max_loops = param.max_loops
else:
max_loops = d

for i in range(max_loops):
phi = True
for k in xrange(d-min(45, param.block_size)):
beta = min(param.block_size, d - k)
f = k + beta
logV = sum(r1[:f]) - sum(r2[:k])
lma = logV/beta + c[beta-1]
if phi:
if lma < r1[k]:
r2[k] = lma
phi = False
else:
r2[k] = lma

# early termination
if phi or r1 == r2:
break
else:
beta = min(45, param.block_size)
logV = sum(r1) - sum(r2[:-beta])

if param.block_size < 45:
tmp = sum(rk[-param.block_size:])/param.block_size
rk1 = [r_-tmp for r_ in rk[-param.block_size:]]
else:
rk1 = rk

for k, r in zip(range(d-beta, d), rk1):
r2[k] = logV/beta + r
r1 = copy(r2)

if param.flags & BKZ.VERBOSE:
r = OrderedDict()
r["i"] = i
for k, v in basis_quality(map(lambda x: 2.**(2*x), r1)).iteritems():
r[k] = v
print(pretty_dict(r))

r1 = map(lambda x: 2.**(2*x), r1)
return r1, i+1

0 comments on commit 1ab6182

Please sign in to comment.