-
Notifications
You must be signed in to change notification settings - Fork 62
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add Michael Walter's implementation of the BKZ simulator
- Loading branch information
Showing
1 changed file
with
129 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
BKZ simulation algorithm as proposed in | ||
- Chen, Y., & Nguyen, P. Q. (2011). BKZ 2.0: better lattice security estimates. In D. H. Lee, & X. | ||
Wang, ASIACRYPT~2011 (pp. 1–20). : Springer, Heidelberg. | ||
.. moduleauthor:: Michael Walter <fplll-devel@googlegroups.com> (2014) | ||
.. moduleauthor:: Martin R. Albrecht <fplll-devel@googlegroups.com> (2018) | ||
""" | ||
from copy import copy | ||
from math import log, sqrt, gamma, pi | ||
from collections import OrderedDict | ||
|
||
from fpylll.tools.quality import basis_quality | ||
from fpylll.tools.bkz_stats import pretty_dict | ||
from fpylll.fplll.bkz import BKZ | ||
from fpylll.fplll.integer_matrix import IntegerMatrix | ||
from fpylll.fplll.gso import MatGSO, GSO | ||
|
||
# This program is free software: you can redistribute it and/or modify it under the terms of the GNU | ||
# General Public License as published by the Free Software Foundation, either version 3 of the | ||
# License, or (at your option) any later version. | ||
# | ||
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without | ||
# even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
# General Public License for more details. | ||
|
||
rk = ( 0.789527997160000, 0.780003183804613, 0.750872218594458, 0.706520454592593, 0.696345241018901, # noqa | ||
0.660533841808400, 0.626274718790505, 0.581480717333169, 0.553171463433503, 0.520811087419712, | ||
0.487994338534253, 0.459541470573431, 0.414638319529319, 0.392811729940846, 0.339090376264829, | ||
0.306561491936042, 0.276041187709516, 0.236698863270441, 0.196186341673080, 0.161214212092249, | ||
0.110895134828114, 0.0678261623920553, 0.0272807162335610, -0.0234609979600137, -0.0320527224746912, | ||
-0.0940331032784437, -0.129109087817554, -0.176965384290173, -0.209405754915959, -0.265867993276493, | ||
-0.299031324494802, -0.349338597048432, -0.380428160303508, -0.427399405474537, -0.474944677694975, | ||
-0.530140672818150, -0.561625221138784, -0.612008793872032, -0.669011014635905, -0.713766731570930, | ||
-0.754041787011810, -0.808609696192079, -0.859933249032210, -0.884479963601658, -0.886666930030433) | ||
|
||
|
||
def simulate(r, param): | ||
""" | ||
BKZ simulation algorithm as proposed by Chen and Nguyen in "BKZ 2.0: Better Lattice Security | ||
Estimates". Returns the reduced squared norms of the GSO vectors of the basis and the number of | ||
BKZ tours simulated. This version terminates when no substantial progress is made anymore or at | ||
most ``max_loops`` tours were simulated. If no ``max_loops`` is given, at most ``d`` tours are | ||
performed, where ``d`` is the dimension of the lattice. | ||
:param r: squared norms of the GSO vectors of the basis. | ||
:param param: BKZ parameters | ||
EXAMPLE: | ||
>>> from fpylll import IntegerMatrix, GSO, LLL, FPLLL, BKZ | ||
>>> FPLLL.set_random_seed(1337) | ||
>>> A = LLL.reduction(IntegerMatrix.random(100, "qary", bits=30, k=50)) | ||
>>> M = GSO.Mat(A) | ||
>>> from fpylll.tools.bkz_simulator import simulate | ||
>>> _ = simulate(M, BKZ.Param(block_size=40, max_loops=4, flags=BKZ.VERBOSE)) | ||
{"i": 0, "r_0": 2^33.3, "r_0/gh": 6.110565, "rhf": 1.018340, "/": -0.07013, "hv/hv": 2.424131} | ||
{"i": 1, "r_0": 2^32.7, "r_0/gh": 4.018330, "rhf": 1.016208, "/": -0.06161, "hv/hv": 2.156298} | ||
{"i": 2, "r_0": 2^32.3, "r_0/gh": 2.973172, "rhf": 1.014679, "/": -0.05745, "hv/hv": 2.047014} | ||
{"i": 3, "r_0": 2^32.1, "r_0/gh": 2.583479, "rhf": 1.013966, "/": -0.05560, "hv/hv": 2.000296} | ||
""" | ||
|
||
if isinstance(r, IntegerMatrix): | ||
r = GSO.Mat(r) | ||
if isinstance(r, MatGSO): | ||
r.update_gso() | ||
r = r.r() | ||
|
||
d = len(r) | ||
|
||
# code uses log2 of norms, FPLLL uses squared norms | ||
r = map(lambda x: log(x, 2)/2., r) | ||
|
||
r1 = copy(r) | ||
r2 = copy(r) | ||
c = [rk[-i] - sum(rk[-i:])/i for i in range(1, 46)] | ||
c += [log(gamma(beta/2.+1)**(1./beta)/(sqrt(pi)), 2) for beta in range(46, param.block_size + 1)] | ||
|
||
if param.max_loops: | ||
max_loops = param.max_loops | ||
else: | ||
max_loops = d | ||
|
||
for i in range(max_loops): | ||
phi = True | ||
for k in xrange(d-min(45, param.block_size)): | ||
beta = min(param.block_size, d - k) | ||
f = k + beta | ||
logV = sum(r1[:f]) - sum(r2[:k]) | ||
lma = logV/beta + c[beta-1] | ||
if phi: | ||
if lma < r1[k]: | ||
r2[k] = lma | ||
phi = False | ||
else: | ||
r2[k] = lma | ||
|
||
# early termination | ||
if phi or r1 == r2: | ||
break | ||
else: | ||
beta = min(45, param.block_size) | ||
logV = sum(r1) - sum(r2[:-beta]) | ||
|
||
if param.block_size < 45: | ||
tmp = sum(rk[-param.block_size:])/param.block_size | ||
rk1 = [r_-tmp for r_ in rk[-param.block_size:]] | ||
else: | ||
rk1 = rk | ||
|
||
for k, r in zip(range(d-beta, d), rk1): | ||
r2[k] = logV/beta + r | ||
r1 = copy(r2) | ||
|
||
if param.flags & BKZ.VERBOSE: | ||
r = OrderedDict() | ||
r["i"] = i | ||
for k, v in basis_quality(map(lambda x: 2.**(2*x), r1)).iteritems(): | ||
r[k] = v | ||
print(pretty_dict(r)) | ||
|
||
r1 = map(lambda x: 2.**(2*x), r1) | ||
return r1, i+1 |