Download:
- release 1.1: https://s3.amazonaws.com/download.onnx/models/opset_3/bvlc_reference_rcnn_ilsvrc13.tar.gz
- release 1.1.2: https://s3.amazonaws.com/download.onnx/models/opset_6/bvlc_reference_rcnn_ilsvrc13.tar.gz
- release 1.2: https://s3.amazonaws.com/download.onnx/models/opset_7/bvlc_reference_rcnn_ilsvrc13.tar.gz
- release 1.3: https://s3.amazonaws.com/download.onnx/models/opset_8/bvlc_reference_rcnn_ilsvrc13.tar.gz
- master: https://s3.amazonaws.com/download.onnx/models/opset_9/bvlc_reference_rcnn_ilsvrc13.tar.gz
Model size: 231 MB
R-CNN is a convolutional neural network for detection. This model was made by transplanting the R-CNN SVM classifiers into a fc-rcnn classification layer.
Rich feature hierarchies for accurate object detection and semantic segmentation
Caffe BVLC R-CNN ILSVRC13 ==> Caffe2 R-CNN ILSVRC13 ==> ONNX R-CNN ILSVRC13
data_0: float[1, 3, 224, 224]
fc-rcnn_1: float[1, 200]
random generated sampe test data:
- test_data_set_0
- test_data_set_1
- test_data_set_2
- test_data_set_3
- test_data_set_4
- test_data_set_5
On the 200-class ILSVRC2013 detection dataset, R-CNN’s mAP is 31.4%.