Skip to content

Latest commit

 

History

History
54 lines (39 loc) · 2.58 KB

README.md

File metadata and controls

54 lines (39 loc) · 2.58 KB

Image classification

Since I do not own enough computing power to iterate over ImageNet full training, this section involves training on a subset of ImageNet, called Imagenette.

Getting started

Ensure that you have holocron installed

git clone https://github.com/frgfm/Holocron.git
pip install -e "Holocron/.[training]"

Download Imagenette and extract it where you want

wget https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz
tar -xvzf imagenette2-320.tgz

From there, you can run your training with the following command

python train.py imagenette2-320/ --arch darknet53 --lr 5e-3 -b 32 -j 16 --epochs 40 --opt adamp --sched onecycle

Personal leaderboard

The updated list of available checkpoints can be found in the documentation.

Imagenette

Model Accuracy@1 (Err) Param # MACs Interpolation Image size
cspdarknet53 92.54 (7.46) 26.63M 5.03G bilinear 224
cspdarknet53_mish 94.14 (5.86) 26.63M 5.03G bilinear 256
rexnet2_2x 91.75 (8.25) 19.49M 1.88G bilinear 224
rexnet50d 92.18 (7.82) 23.55M 4.35G bilinear 224
darknet53 91.46 (8.54) 40.60M 9.31G bilinear 256
repvgg_a2 91.26 (8.74) 48.63M bilinear 224
darknet19 91.87 (8.13) 19.83M 2.75G bilinear 224
tridentresnet50 91.01 (8.99) 45.83M 35.9G bilinear 224
sknet50 90.42 (9.58) 35.22M 5.96G bilinear 224
rexnet1_3x 94.06 (5.94) 7.56M 0.68G bilinear 224
repvgg_a1 90.97 (9.03) 30.12M bilinear 224
rexnet1_0x 92.99 (7.01) 4.80M 0.42G bilinear 224
repvgg_a0 91.18 (8.82) 24.74M bilinear 224
repvgg_b0 89.61 (9.39) 31.85M bilinear 224
res2net50_26w_4s 89.58 (99.26) 23.67M 4.28G bilinear 224
darnet24 91.57 (8.43) 22.40M 4.21G bilinear 224
resnet50 84.36 (15.64) 23.53M 4.11G bilinear 224