-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbddc.hpp
404 lines (386 loc) · 22.1 KB
/
bddc.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#include <ginkgo/ginkgo.hpp>
#include <set>
#include <vector>
#include "block_matrix.hpp"
#include "ginkgo/core/base/array.hpp"
#include "ginkgo/core/base/executor.hpp"
#include "ginkgo/core/matrix/permutation.hpp"
#include "ginkgo/core/reorder/amd.hpp"
struct bddc{
using mtx = gko::matrix::Csr<double>;
using vec = gko::matrix::Dense<double>;
using diag = gko::matrix::Diagonal<double>;
bddc(std::shared_ptr<block_matrix> A, std::shared_ptr<overlapping_vector> buffer) : A(A), interfaces{A->interfaces}, local_interfaces{A->local_interfaces} {
auto N = A->local_mtxs_.size();
auto A_size = A->size_;
inner_solvers.resize(N);
inner_amd.resize(N);
inner_rhs.resize(N);
inner_sol.resize(N);
A_gi.resize(N);
A_ig.resize(N);
workspace_1 = buffer->clone();
workspace_2 = buffer->clone();
workspace_3 = buffer->clone();
auto exec = A->local_mtxs_[0]->get_executor();
#pragma omp taskwait
for (size_t i = 0; i < N; i++) {
#pragma omp task shared(inner_solvers)
{
// Set up inner solvers
auto local_mtx = A->local_mtxs_[i];
auto inner_mtx = gko::share(A->inner_mtxs_[i]->create_submatrix(gko::span{0, A->inner_mtxs_[i]->get_size()[0]}, gko::span{0, A->inner_mtxs_[i]->get_size()[0]}));
inner_amd[i] = gko::experimental::reorder::Amd<int>::build().on(exec)->generate(inner_mtx);
auto perm_A = gko::share(inner_mtx->permute(inner_amd[i]));
inner_solvers[i] = gko::experimental::solver::Direct<double, int>::build()
.with_factorization(
gko::experimental::factorization::Cholesky<double, int>::build().on(exec))
.on(exec)->generate(perm_A);
inner_rhs[i] = vec::create(exec, gko::dim<2>{inner_mtx->get_size()[0], 1});
inner_sol[i] = vec::create(exec, gko::dim<2>{inner_mtx->get_size()[0], 1});
}
}
one = gko::initialize<vec>({1.0}, exec);
neg_one = gko::initialize<vec>({-1.0}, exec);
// Set up stiffness scaling operators
weights.resize(N);
std::vector<std::shared_ptr<vec>> local_diag_vec(N);
for (size_t i = 0; i < N; i++) {
#pragma omp task shared (local_diag_vec, buffer) depend (out: buffer->bndry_data[i])
{
auto local_mtx = A->local_mtxs_[i];
auto local_diag = gko::share(local_mtx->extract_diagonal());
auto local_diag_array = gko::make_const_array_view(exec, local_diag->get_size()[0], local_diag->get_const_values());
local_diag_vec[i] = gko::clone(vec::create_const(exec, gko::dim<2>{local_diag->get_size()[0], 1}, std::move(local_diag_array), 1));
buffer->data[i]->copy_from(local_diag_vec[i]);
}
}
#pragma omp taskwait
buffer->make_consistent();
#pragma omp taskwait
for (size_t i = 0; i < N; i++) {
#pragma omp task shared (local_diag_vec, buffer) depend (in: buffer->bndry_data[i])
{
auto n = buffer->bndry_data[i]->get_size()[0];
auto n_inner = buffer->inner_data[i]->get_size()[0];
auto global_diag_array = gko::make_const_array_view(exec, n, buffer->bndry_data[i]->get_const_values());
auto global_diag = diag::create_const(exec, n, std::move(global_diag_array));
auto weights_vec = vec::create(exec, gko::dim<2>{n, 1});
auto local_bndry_diag = local_diag_vec[i]->create_submatrix(gko::span{n_inner, n_inner + n}, gko::span{0, 1});
global_diag->inverse_apply(local_bndry_diag, weights_vec);
auto weights_array = gko::make_const_array_view(exec, n, weights_vec->get_const_values());
weights[i] = gko::clone(diag::create_const(exec, n, std::move(weights_array)));
}
}
// Set up restriction operators, constraints and local solvers
C.resize(N);
CT.resize(N);
local_solvers.resize(N);
local_amd.resize(N);
local_rhs.resize(N);
local_sol.resize(N);
local_schur_solvers.resize(N);
phi.resize(N);
phi_t.resize(N);
schur_rhs.resize(N);
schur_sol.resize(N);
gko::matrix_data<double, int> coarse_data(gko::dim<2>{interfaces.size(), interfaces.size()});
for (size_t i = 0; i < N; i++) {
#pragma omp task shared (coarse_data)
{
auto local_mtx = A->local_mtxs_[i];
size_t n_inner_dofs = A->inner_idxs[i].size();
size_t n_edges = 0;
size_t n_edge_dofs = 0;
size_t n_corner_dofs = 0;
for (size_t j = 0; j < local_interfaces[i].size(); j++) {
auto interf_size = interfaces[local_interfaces[i][j]].second.size();
if (interf_size > 1) {
n_edges++;
n_edge_dofs += interf_size;
} else {
n_corner_dofs++;
}
}
gko::matrix_data<double, int> C_data(gko::dim<2>{n_edges, n_inner_dofs + n_edge_dofs});
size_t start = n_inner_dofs;
for (size_t j = 0; j < n_edges; j++) {
auto interf_size = interfaces[local_interfaces[i][j]].second.size();
double val = 1.0 / interf_size;
for (size_t k = start; k < start + interf_size; k++) {
C_data.nonzeros.emplace_back(j, k, val);
}
start += interf_size;
}
C[i] = mtx::create(exec);
C[i]->read(C_data);
CT[i] = gko::as<mtx>(C[i]->transpose());
auto A_ee = gko::share(local_mtx->create_submatrix(gko::span{0, n_inner_dofs + n_edge_dofs}, gko::span{0, n_inner_dofs + n_edge_dofs}));
auto A_ec = gko::share(local_mtx->create_submatrix(gko::span{0, n_inner_dofs + n_edge_dofs}, gko::span{n_inner_dofs + n_edge_dofs, n_inner_dofs + n_edge_dofs + n_corner_dofs}));
auto A_ce = gko::share(local_mtx->create_submatrix(gko::span{n_inner_dofs + n_edge_dofs, n_inner_dofs + n_edge_dofs + n_corner_dofs}, gko::span{0, n_inner_dofs + n_edge_dofs}));
auto A_cc = gko::share(local_mtx->create_submatrix(gko::span{n_inner_dofs + n_edge_dofs, n_inner_dofs + n_edge_dofs + n_corner_dofs}, gko::span{n_inner_dofs + n_edge_dofs, n_inner_dofs + n_edge_dofs + n_corner_dofs}));
A_gi[i] = gko::share(local_mtx->create_submatrix(gko::span{n_inner_dofs, n_inner_dofs + n_edge_dofs + n_corner_dofs}, gko::span{0, n_inner_dofs}));
A_ig[i] = gko::share(local_mtx->create_submatrix(gko::span{0, n_inner_dofs}, gko::span{n_inner_dofs, n_inner_dofs + n_edge_dofs + n_corner_dofs}));
local_amd[i] = gko::experimental::reorder::Amd<int>::build().on(exec)->generate(A_ee);
auto perm_A = gko::share(A_ee->permute(local_amd[i]));
local_solvers[i] = gko::experimental::solver::Direct<double, int>::build()
.with_factorization(
gko::experimental::factorization::Cholesky<double, int>::build().on(exec))
.on(exec)->generate(perm_A);
local_rhs[i] = vec::create(exec, gko::dim<2>{n_inner_dofs + n_edge_dofs, 1});
local_sol[i] = vec::create(exec, gko::dim<2>{n_inner_dofs + n_edge_dofs, 1});
auto setup_solvers = std::vector<std::shared_ptr<gko::LinOp>>(n_edges + n_corner_dofs);
/* for (auto k = 0; k < n_edges + n_corner_dofs; k++) { */
/* #pragma omp task shared (setup_solvers) */
/* setup_solvers[k] = gko::clone(local_solvers[i]); */
/* } */
/* #pragma omp taskwait */
std::shared_ptr<vec> local_schur_complement = vec::create(exec, gko::dim<2>{n_edges, n_edges});
auto dense_CT = gko::share(vec::create(exec));
dense_CT->copy_from(CT[i]);
auto intermediate = gko::share(dense_CT->clone());
for (size_t j = 0; j < n_edges; j++) {
/* #pragma omp task shared(dense_CT, intermediate, setup_solvers) */
/* { */
auto rhs = gko::share(dense_CT->create_submatrix(gko::span{0, n_inner_dofs + n_edge_dofs}, gko::span{j, j + 1}));
auto sol = gko::share(intermediate->create_submatrix(gko::span{0, n_inner_dofs + n_edge_dofs}, gko::span{j, j + 1}));
rhs->permute(local_amd[i], local_rhs[i], gko::matrix::permute_mode::rows);
local_solvers[i]->apply(local_rhs[i], local_sol[i]);
local_sol[i]->permute(local_amd[i], sol, gko::matrix::permute_mode::inverse_rows);
/* setup_solvers[j]->apply(rhs, sol); */
/* } */
}
//#pragma omp taskwait
C[i]->apply(intermediate, local_schur_complement);
auto ls = gko::share(mtx::create(exec));
ls->copy_from(local_schur_complement);
local_schur_solvers[i] = gko::experimental::solver::Direct<double, int>::build()
.with_factorization(
gko::experimental::factorization::Cholesky<double, int>::build().on(exec))
.on(exec)->generate(ls);
schur_rhs[i] = vec::create(exec, gko::dim<2>{n_edges, 1});
schur_sol[i] = vec::create(exec, gko::dim<2>{n_edges, 1});
auto phi_whole = vec::create(exec, gko::dim<2>{n_inner_dofs + n_edge_dofs + n_corner_dofs, n_edges + n_corner_dofs});
auto lambda = vec::create(exec, gko::dim<2>{n_edges + n_corner_dofs, n_edges + n_corner_dofs});
phi_whole->fill(0.0);
lambda->fill(0.0);
for (size_t j = 0; j < n_corner_dofs; j++) {
phi_whole->at(n_inner_dofs + n_edge_dofs + j, n_edges + j) = 1.0;
}
auto phi_e = gko::share(phi_whole->create_submatrix(gko::span{0, n_inner_dofs + n_edge_dofs}, gko::span{0, n_edges + n_corner_dofs}));
auto phi_c = gko::share(phi_whole->create_submatrix(gko::span{n_inner_dofs + n_edge_dofs, n_inner_dofs + n_edge_dofs + n_corner_dofs}, gko::span{0, n_edges + n_corner_dofs}));
auto lambda_e = gko::share(lambda->create_submatrix(gko::span{0, n_edges}, gko::span{0, n_edges + n_corner_dofs}));
auto lambda_c = gko::share(lambda->create_submatrix(gko::span{n_edges, n_edges + n_corner_dofs}, gko::span{0, n_edges + n_corner_dofs}));
auto rhs = gko::share(vec::create(exec, gko::dim<2>{n_inner_dofs + n_edge_dofs, n_edges + n_corner_dofs}));
auto schur_rhs = gko::share(vec::create(exec, gko::dim<2>{n_edges, n_edges + n_corner_dofs}));
schur_rhs->fill(0.0);
for (size_t j = 0; j < n_edges; j++) {
schur_rhs->at(j, j) = 1.0;
}
auto schur_interm = rhs->clone();
schur_interm->fill(0.0);
A_ec->apply(phi_c, rhs);
rhs->scale(neg_one);
for (size_t j = 0; j < n_edges + n_corner_dofs; j++) {
/* #pragma omp task shared(rhs, schur_interm, setup_solvers) */
/* { */
auto rhs_sub = rhs->create_submatrix(gko::span{0, n_inner_dofs + n_edge_dofs}, gko::span{j, j + 1});
auto sol_sub = schur_interm->create_submatrix(gko::span{0, n_inner_dofs + n_edge_dofs}, gko::span{j, j + 1});
rhs_sub->permute(local_amd[i], local_rhs[i], gko::matrix::permute_mode::rows);
local_solvers[i]->apply(local_rhs[i], local_sol[i]);
local_sol[i]->permute(local_amd[i], sol_sub, gko::matrix::permute_mode::inverse_rows);
/* setup_solvers[j]->apply(rhs_sub, sol_sub); */
/* } */
}
//#pragma omp taskwait
C[i]->apply(one, schur_interm, neg_one, schur_rhs);
for (size_t j = 0; j < n_edges + n_corner_dofs; j++) {
auto rhs_sub = schur_rhs->create_submatrix(gko::span{0, n_edges}, gko::span{j, j + 1});
auto sol_sub = lambda_e->create_submatrix(gko::span{0, n_edges}, gko::span{j, j + 1});
local_schur_solvers[i]->apply(rhs_sub, sol_sub);
}
CT[i]->apply(neg_one, lambda_e, one, rhs);
for (size_t j = 0; j < n_edges + n_corner_dofs; j++) {
/* #pragma omp task shared(rhs, phi_e, setup_solvers) */
/* { */
auto rhs_sub = rhs->create_submatrix(gko::span{0, n_inner_dofs + n_edge_dofs}, gko::span{j, j + 1});
auto phi_sub = phi_e->create_submatrix(gko::span{0, n_inner_dofs + n_edge_dofs}, gko::span{j, j + 1});
rhs_sub->permute(local_amd[i], local_rhs[i], gko::matrix::permute_mode::rows);
local_solvers[i]->apply(local_rhs[i], local_sol[i]);
local_sol[i]->permute(local_amd[i], phi_sub, gko::matrix::permute_mode::inverse_rows);
/* setup_solvers[j]->apply(rhs_sub, phi_sub); */
/* } */
}
//#pragma omp taskwait
A_cc->apply(phi_c, lambda_c);
A_ce->apply(neg_one, phi_e, neg_one, lambda_c);
gko::matrix_data<double, int> phi_data(gko::dim<2>{n_edge_dofs + n_corner_dofs, interfaces.size()});
for (size_t j = 0; j < n_edge_dofs + n_corner_dofs; j++) {
for (size_t k = 0; k < n_edges + n_corner_dofs; k++) {
phi_data.nonzeros.emplace_back(j, local_interfaces[i][k], phi_whole->at(n_inner_dofs + j, k));
}
}
phi_data.remove_zeros();
phi[i] = mtx::create(exec);
phi[i]->read(phi_data);
phi_t[i] = gko::as<mtx>(phi[i]->transpose());
#pragma omp critical
{
for (size_t j = 0; j < local_interfaces[i].size(); j++) {
coarse_data.nonzeros.emplace_back(local_interfaces[i][j], local_interfaces[i][j], -lambda->at(j, j));
for (size_t k = j + 1; k < local_interfaces[i].size(); k++) {
coarse_data.nonzeros.emplace_back(local_interfaces[i][j], local_interfaces[i][k], -lambda->at(j, k));
coarse_data.nonzeros.emplace_back(local_interfaces[i][k], local_interfaces[i][j], -lambda->at(j, k));
}
}
}
}
}
#pragma omp taskwait
coarse_data.sum_duplicates();
coarse_data.remove_zeros();
auto A_coarse = gko::share(mtx::create(exec));
A_coarse->read(coarse_data);
coarse_solver = gko::experimental::solver::Direct<double, int>::build()
.with_factorization(
gko::experimental::factorization::Cholesky<double, int>::build().on(exec))
.on(exec)->generate(A_coarse);
coarse_rhs = vec::create(exec, gko::dim<2>{interfaces.size(), 1});
coarse_sol = vec::create(exec, gko::dim<2>{interfaces.size(), 1});
}
void solve_inner(std::shared_ptr<overlapping_vector> b, std::shared_ptr<overlapping_vector> x)
{
auto N = A->local_mtxs_.size();
for (size_t i = 0; i < N; i++) {
#pragma omp task shared(inner_solvers) depend (in: b->inner_data[i]) depend(out: x->inner_data[i])
{
b->inner_data[i]->permute(inner_amd[i], inner_rhs[i], gko::matrix::permute_mode::rows);
inner_solvers[i]->apply(inner_rhs[i], inner_sol[i]);
inner_sol[i]->permute(inner_amd[i], x->inner_data[i], gko::matrix::permute_mode::inverse_rows);
}
}
}
void static_condensation_1(std::shared_ptr<overlapping_vector> b, std::shared_ptr<overlapping_vector> x)
{
auto N = A->local_mtxs_.size();
solve_inner(b, x);
for (size_t i = 0; i < N; i++) {
#pragma omp task depend (in: x->inner_data[i], b->bndry_data[i]) depend(out: x->bndry_data[i])
{
auto exec = A->local_mtxs_[i]->get_executor();
x->bndry_data[i]->copy_from(b->bndry_data[i]);
A_gi[i]->apply(neg_one, x->inner_data[i], one, x->bndry_data[i]);
}
}
}
void static_condensation_2(std::shared_ptr<overlapping_vector> b, std::shared_ptr<overlapping_vector> x)
{
auto N = A->local_mtxs_.size();
for (size_t i = 0; i < N; i++) {
#pragma omp task depend (in: b->bndry_data[i], b->inner_data[i]) depend (out: b->inner_data[i], x->bndry_data[i])
{
x->bndry_data[i]->copy_from(b->bndry_data[i]);
A_ig[i]->apply(neg_one, b->bndry_data[i], one, b->inner_data[i]);
}
}
solve_inner(b, x);
}
void apply(std::shared_ptr<overlapping_vector> b, std::shared_ptr<overlapping_vector> x)
{
auto N = A->local_mtxs_.size();
workspace_1->fill(0.0);
static_condensation_1(b, workspace_1);
coarse_rhs->fill(0.0);
for (size_t i = 0; i < N; i++) {
#pragma omp task depend (in: workspace_1->bndry_data[i]) depend (out: workspace_1->bndry_data[i])
{
weights[i]->apply(workspace_1->bndry_data[i], workspace_1->bndry_data[i]);
}
#pragma omp task depend (in: workspace_1->bndry_data[i]) depend (out: this->coarse_rhs)
{
double res = 0;
for (size_t j = 0; j < local_interfaces[i].size(); j++) {
res = 0;
auto row_ptrs = phi_t[i]->get_const_row_ptrs();
auto interf = local_interfaces[i][j];
auto vals = phi_t[i]->get_const_values();
for (auto idx = row_ptrs[interf]; idx < row_ptrs[interf + 1]; idx++) {
auto k = phi_t[i]->get_const_col_idxs()[idx];
res += vals[idx] * workspace_1->bndry_data[i]->at(k);
}
#pragma omp atomic
coarse_rhs->at(local_interfaces[i][j]) += res;
}
/* #pragma omp critical */
/* phi_t[i]->apply(one, workspace_1->bndry_data[i], one, coarse_rhs); */
}
#pragma omp task depend (in: workspace_1->bndry_data[i]) depend (out: workspace_2->bndry_data[i])
{
workspace_1->inner_data[i]->fill(0.0);
auto e_end = local_solvers[i]->get_size()[0];
auto c_end = workspace_1->data[i]->get_size()[0];
auto e_rhs_orig = workspace_1->data[i]->create_submatrix(gko::span{0, e_end}, gko::span{0, 1});
auto e_rhs = workspace_3->data[i]->create_submatrix(gko::span{0, e_end}, gko::span{0, 1});
e_rhs->copy_from(e_rhs_orig);
auto e_lhs = workspace_2->data[i]->create_submatrix(gko::span{0, e_end}, gko::span{0, 1});
e_rhs->permute(local_amd[i], local_rhs[i], gko::matrix::permute_mode::rows);
local_solvers[i]->apply(local_rhs[i], local_sol[i]);
local_sol[i]->permute(local_amd[i], e_lhs, gko::matrix::permute_mode::inverse_rows);
C[i]->apply(e_lhs, schur_rhs[i]);
local_schur_solvers[i]->apply(schur_rhs[i], schur_sol[i]);
CT[i]->apply(neg_one, schur_sol[i], one, e_rhs);
e_rhs->permute(local_amd[i], local_rhs[i], gko::matrix::permute_mode::rows);
local_solvers[i]->apply(local_rhs[i], local_sol[i]);
local_sol[i]->permute(local_amd[i], e_lhs, gko::matrix::permute_mode::inverse_rows);
auto c_lhs = workspace_2->data[i]->create_submatrix(gko::span{e_end, c_end}, gko::span{0, 1});
c_lhs->fill(0.0);
}
}
#pragma omp task shared (this->coarse_rhs, this->coarse_sol) depend (in: this->coarse_rhs) depend (out: this->coarse_sol)
{
coarse_solver->apply(coarse_rhs, coarse_sol);
}
for (size_t i = 0; i < N; i++) {
#pragma omp task depend (in: this->coarse_sol, workspace_2->bndry_data[i]) depend (out: workspace_2->bndry_data[i], workspace_2->inner_data[i])
{
phi[i]->apply(one, coarse_sol, one, workspace_2->bndry_data[i]);
weights[i]->apply(workspace_2->bndry_data[i], workspace_2->bndry_data[i]);
workspace_2->inner_data[i]->copy_from(b->inner_data[i]);
}
}
workspace_2->make_consistent();
static_condensation_2(workspace_2, x);
}
std::shared_ptr<block_matrix> A;
std::vector<std::shared_ptr<mtx>> A_gi;
std::vector<std::shared_ptr<mtx>> A_ig;
std::vector<std::shared_ptr<gko::LinOp>> inner_solvers;
std::vector<std::shared_ptr<gko::matrix::Permutation<int>>> inner_amd;
std::vector<std::shared_ptr<vec>> inner_rhs;
std::vector<std::shared_ptr<vec>> inner_sol;
std::shared_ptr<overlapping_vector> workspace_1;
std::shared_ptr<overlapping_vector> workspace_2;
std::shared_ptr<overlapping_vector> workspace_3;
std::vector<std::pair<std::vector<int>, std::vector<int>>> interfaces;
std::vector<std::vector<int>> bndry_to_interfaces;
std::vector<std::shared_ptr<mtx>> C;
std::vector<std::shared_ptr<mtx>> CT;
std::vector<std::shared_ptr<mtx>> R;
std::vector<std::shared_ptr<mtx>> RT;
std::vector<std::shared_ptr<gko::LinOp>> local_solvers;
std::vector<std::shared_ptr<gko::matrix::Permutation<int>>> local_amd;
std::vector<std::shared_ptr<vec>> local_rhs;
std::vector<std::shared_ptr<vec>> local_sol;
std::vector<std::shared_ptr<gko::LinOp>> local_schur_solvers;
std::vector<std::shared_ptr<vec>> schur_rhs;
std::vector<std::shared_ptr<vec>> schur_sol;
std::shared_ptr<gko::LinOp> coarse_solver;
std::shared_ptr<vec> coarse_rhs;
std::shared_ptr<vec> coarse_sol;
std::vector<std::vector<int>> local_interfaces;
std::shared_ptr<vec> one;
std::shared_ptr<vec> neg_one;
std::vector<std::shared_ptr<mtx>> phi;
std::vector<std::shared_ptr<mtx>> phi_t;
std::vector<std::shared_ptr<diag>> weights;
};