-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbands.py
264 lines (203 loc) · 8.2 KB
/
bands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import numpy as np
import pygame
import pdb
def normalize(vector):
return vector / np.linalg.norm(vector)
class Node:
def __init__(self, pos = None, prv = None, nxt = None,
locked = False, mass = 1.0, jointRigidity = 1.0):
self.pos = pos # X, Y, V numpy array
self.prv = prv # previous node
self.nxt = nxt # next node
self.locked = locked # if true, forces have no effect on this node
self.mass = mass # 1 / how much a froce effects that node
self.k = jointRigidity # coefficient for the tension force
self.dist = 0 # way to first node
self.minDist = 20
if self.prv:
self.dist = self.getDistance()
def insertNodeProg(self, pos, locked = False, mass = 1.0, jointRigidity = 1.0):
# insert new node after
self.nxt = Node(pos, self, self.nxt, locked, mass, jointRigidity)
self.nxt.nxt.prv = self.nxt
return
def insertNodeRetro(self, pos, locked = False, mass = 1.0, jointRigidity = 1.0):
# insert new node after
self.prv = Node(pos, self.prv, self, locked, mass, jointRigidity)
self.prv.prv.nxt = self.prv
return
def calcForces(self):
totForce = np.array([0, 0, 0])
if not self.locked:
totForce = totForce + self.getTensionForce()
totForce = totForce + self.getObstacleForce()
totForce = totForce + self.getDVForce(5)
totForce = totForce + self.getVForce()
return totForce
def applyForces(self):
self.pos = self.pos + 1 / self.mass * self.calcForces()
if self.pos[2] > 255:
self.pos[2] = 255
if self.pos[2] < 0:
self.pos[2] = 0
def getTensionForce(self):
pos = self.pos[0:3]
tensionForce = np.array([0, 0, 0])
if self.prv:
prv = self.prv.pos[0:3]
kPrv = 1 / (1 / self.k + 1 / self.prv.k)
tensionForce = tensionForce + kPrv * (prv - pos) / \
np.linalg.norm((prv - pos))
if self.nxt:
nxt = self.nxt.pos[0:3]
kNxt = 1 / (1 / self.k + 1 / self.nxt.k)
tensionForce = tensionForce + kNxt * (nxt- pos) / \
np.linalg.norm((nxt- pos))
# return np.append(tensionForce, 0)
return tensionForce
def getObstacleForce(self):
pos = self.pos[0:2]
obstacleForce = np.array([0, 0])
obsPos = np.array([150, 130])
dist = np.linalg.norm(obsPos - pos)
if dist < 30:
obstacleForce = (pos - obsPos) / (dist*dist)
if self.prv and self.nxt:
prv = self.prv.pos[0:2]
nxt = self.nxt.pos[0:2]
obstacleForce = - np.linalg.norm(obstacleForce) * \
(normalize(nxt - pos) + \
normalize(prv - pos))
# if self.prv and self.nxt:
# obstacleForce = obstacleForce - obstacleForce * \
# ((self.prv.pos - self.nxt.pos) / \
# np.linalg.norm(self.prv.pos - self.nxt.pos)) * \
# ((self.prv.pos - self.nxt.pos) / \
# np.linalg.norm(self.prv.pos - self.nxt.pos))
return np.append(obstacleForce * 20, 0)
def getDVForce(self, aMax):
force = np.array([0, 0, 0])
accRetro = self.getAccelerationRetro()
accProg = self.getAccelerationProg()
# force[2] = force[2] + (accRetro + accProg)
if accRetro > aMax:
force[2] = force[2] + accRetro - aMax
elif accRetro < -aMax:
force[2] = force[2] + accRetro + aMax
if accProg > aMax:
force[2] = force[2] + accProg - aMax
elif accProg < -aMax:
force[2] = force[2] + accProg + aMax
return force
# force = np.array([0, 0, 0])
# dVR = self.getDVDXYRetro()
# dVP = self.getDVDXY()
# if dVR > aMax:
# force[2] = -dVR
# elif dVP < -aMax:
# force[2] = dVP
# return force
def smoothCurve(self, fPedMax):
if self.getCurvature() > fPedMax:
if np.linalg.norm(self.pos - self.nxt.pos) > self.minDist:
self.insertNodeProg(self.pos + (self.nxt.pos - self.pos) / 3)
if np.linalg.norm(self.pos - self.prv.pos) > self.minDist:
self.insertNodeRetro(self.pos + (self.prv.pos - self.pos) / 3)
def getXY(self):
return (int(self.pos[0]), int(self.pos[1]))
def getV(self):
return int(self.pos[2])
def getDVDXY(self):
derivative = 0
diff = np.array([0, 0, 0])
if self.nxt:
diff = self.nxt.pos - self.pos
derivative = diff[2]
diff[2] = 0
derivative = derivative / np.linalg.norm(diff)
return derivative
def getDVDXYRetro(self):
derivative = 0
diff = np.array([0, 0, 0])
if self.prv:
diff = self.pos - self.prv.pos
derivative = diff[2]
diff[2] = 0
derivative = derivative / np.linalg.norm(diff)
return derivative
def getAccelerationProg(self):
acc = 0
if self.nxt:
diff = self.nxt.pos - self.pos
diff[2] = 0
acc = (self.nxt.pos[2]**2 - self.pos[2]**2) / np.linalg.norm(diff) / 2
return acc
def getAccelerationRetro(self):
acc = 0
if self.prv:
diff = self.prv.pos - self.pos
diff[2] = 0
acc = (self.prv.pos[2]**2 - self.pos[2]**2) / np.linalg.norm(diff) / 2
return acc
def getCurvature(self):
curvature = 0
if self.nxt and self.prv:
pos = self.pos[0:2]
nxt = self.nxt.pos[0:2]
prv = self.prv.pos[0:2]
curvature = normalize(nxt - pos) - normalize(pos - prv)
curvature = self.pos[2] * np.linalg.norm(curvature)
return curvature
def getDistance(self):
pos = self.pos[0:2]
prv = self.prv.pos[0:2]
return np.linalg.norm(pos - prv) + self.prv.dist
def getVForce(self):
return np.array([0, 0, 0.1])
if __name__ == "__main__":
pygame.init()
fpsClock = pygame.time.Clock()
window = pygame.display.set_mode((640, 480))
head = Node(np.array([90, 90, 0]), None, None, True)
node = head
positions = [[131, 100, 0],
[180, 80, 0],
[200, 150, 0],
[250, 190, 0],
[200, 250, 0]]
for pos in positions:
node.nxt = Node(np.array(pos), node, None)
node = node.nxt
node.locked = True
node = head
while(node):
print(node.pos)
node = node.nxt
while True:
window.fill(pygame.Color(0, 0, 0))
pygame.draw.circle(window, pygame.Color(255, 255, 0), (150, 130), 30, 2)
node = head
while(node):
if node.prv:
pygame.draw.line(window, pygame.Color(150, 150, 150),
(node.prv.dist, node.prv.getV()),
(node.dist, node.getV()), 2)
pygame.draw.line(window, pygame.Color(255, 0, 0),
(node.dist - 2, 0),
(node.dist - 2, node.getAccelerationRetro() * 20), 4)
if node.nxt:
pygame.draw.line(window, pygame.Color(255, 0, 0), node.getXY(),
node.nxt.getXY(), 4)
pygame.draw.line(window, pygame.Color(0, 255, 0),
(node.dist + 2, 0),
(node.dist + 2, node.getAccelerationProg() * 20), 4)
forceVector = node.pos + node.calcForces() * 100
pygame.draw.line(window, pygame.Color(255, 255, 0),
node.getXY(), (forceVector[0], forceVector[1]), 1)
pygame.draw.circle(window, pygame.Color(0, node.getV(), 200),
node.getXY(), 3, 3)
node.applyForces()
node.smoothCurve(10)
node = node.nxt
pygame.display.update()
fpsClock.tick(30)