forked from sgl-project/sglang
-
Notifications
You must be signed in to change notification settings - Fork 0
/
srt_example_llava.py
67 lines (51 loc) · 1.63 KB
/
srt_example_llava.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
Usage: python3 srt_example_llava.py
"""
import sglang as sgl
@sgl.function
def image_qa(s, image_path, question):
s += sgl.user(sgl.image(image_path) + question)
s += sgl.assistant(sgl.gen("answer"))
def single():
state = image_qa.run(
image_path="images/cat.jpeg",
question="What is this?",
max_new_tokens=64)
print(state["answer"], "\n")
def stream():
state = image_qa.run(
image_path="images/cat.jpeg",
question="What is this?",
max_new_tokens=64,
stream=True)
for out in state.text_iter("answer"):
print(out, end="", flush=True)
print()
def batch():
states = image_qa.run_batch(
[
{"image_path": "images/cat.jpeg", "question":"What is this?"},
{"image_path": "images/dog.jpeg", "question":"What is this?"},
],
max_new_tokens=64,
)
for s in states:
print(s["answer"], "\n")
if __name__ == "__main__":
runtime = sgl.Runtime(model_path="liuhaotian/llava-v1.6-vicuna-7b",
tokenizer_path="llava-hf/llava-1.5-7b-hf")
sgl.set_default_backend(runtime)
print(f"chat template: {runtime.endpoint.chat_template.name}")
# Or you can use API models
# sgl.set_default_backend(sgl.OpenAI("gpt-4-vision-preview"))
# sgl.set_default_backend(sgl.VertexAI("gemini-pro-vision"))
# Run a single request
print("\n========== single ==========\n")
single()
# Stream output
print("\n========== stream ==========\n")
stream()
# Run a batch of requests
print("\n========== batch ==========\n")
batch()
runtime.shutdown()