We recommend creating a symlink for your dataset root at $GSS/data. If your directory structure varies, please adjust the relevant paths in the configuration files for proper alignment.
Data folder structure
mmsegmentation
├── mmseg
├── tools
├── configs
├── data
│ ├── cityscapes
│ │ ├── leftImg8bit
│ │ │ ├── train
│ │ │ ├── val
│ │ ├── gtFine
│ │ │ ├── train
│ │ │ ├── val
│ ├── ade
│ │ ├── ADEChallengeData2016
│ │ │ ├── annotations
│ │ │ │ ├── training
│ │ │ │ ├── validation
│ │ │ ├── images
│ │ │ │ ├── training
│ │ │ │ ├── validation
│ ├── mseg_dataset
│ │ ├── ADE20K
│ │ ├── Cityscapes
│ │ ├── KITTI
│ │ ├── PASCAL_VOC_2012
│ │ ├── WildDash
│ │ ├── BDD
│ │ ├── COCOPanoptic
│ │ ├── MapillaryVistasPublic
│ │ ├── ScanNet
│ │ ├── Camvid
│ │ ├── IDD
│ │ ├── PASCAL_Context
│ │ ├── SUNRGBD
You can access the data here once you've registered.
**labelTrainIds.png
is utilized for Cityscapes training. MMSeg have provided a script, built upon cityscapesscripts, to generate the **labelTrainIds.png
files.
# --nproc means 8 process for conversion, which could be omitted as well.
python tools/dataset_converters/cityscapes.py data/cityscapes --nproc 8
You can download the training and validation sets for ADE20K from this link. Additionally, the test set is available for download here.
Please follow MSeg download instruction to download MSeg dataset