-
Notifications
You must be signed in to change notification settings - Fork 14
/
main_finetune_mmst_vit.py
447 lines (345 loc) · 17.3 KB
/
main_finetune_mmst_vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import argparse
import datetime
import json
import math
import sys
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from einops import rearrange
from torch.utils.tensorboard import SummaryWriter
import timm.optim.optim_factory as optim_factory
import util.misc as misc
from dataset.data_wrapper import DataWrapper
from dataset.hrrr_loader import HRRR_Dataset
from dataset.sentinel_loader import Sentinel_Dataset
from dataset.usda_loader import USDA_Dataset
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from models_pvt_simclr import PVTSimCLR
from typing import Iterable
import util.lr_sched as lr_sched
from models_mmst_vit import MMST_ViT
from util import metrics
from datetime import datetime
torch.manual_seed(0)
np.random.seed(0)
# RMSE, R_Squared, Corr
best_metrics = [float("inf"), 0, 0]
def get_args_parser():
parser = argparse.ArgumentParser('MMST-ViT fine-tuning', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--embed_dim', default=512, type=int, help='embed dimensions')
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--model_pvt', default='pvt_tiny', type=str, metavar='MODEL',
help='Name of backbone model to train')
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
parser.add_argument('--input_size', default=224, type=int, help='images input size')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR')
parser.add_argument('--output_dir', default='./output_dir/mmst_vit',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir/mmst_vit',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# dataset
parser.add_argument('-dr', '--root_dir', type=str, default='/mnt/data/Tiny CropNet')
parser.add_argument('-sf', '--save_freq', type=int, default=2)
# train and val
parser.add_argument('-dft', '--data_file_train', type=str, default='./data/soybean_train.json')
parser.add_argument('-dfv', '--data_file_val', type=str, default='./data/soybean_val.json')
# pvt_simclr
parser.add_argument('--pvt_simclr', default='', help='load from checkpoint')
# evaluate
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--eval_year', type=int, default=2022, help='specify the year for prediction')
# resume
parser.add_argument('--resume', default='', help='resume from checkpoint')
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_sentinel_train = Sentinel_Dataset(args.root_dir, args.data_file_train)
dataset_hrrr_train = HRRR_Dataset(args.root_dir, args.data_file_train)
dataset_usda_train = USDA_Dataset(args.root_dir, args.data_file_train)
dataset_sentinel_val = Sentinel_Dataset(args.root_dir, args.data_file_val)
dataset_hrrr_val = HRRR_Dataset(args.root_dir, args.data_file_val)
dataset_usda_val = USDA_Dataset(args.root_dir, args.data_file_val)
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
# train
sampler_sentinel_train = torch.utils.data.DistributedSampler(
dataset_sentinel_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_hrrr_train = torch.utils.data.DistributedSampler(
dataset_hrrr_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_usda_train = torch.utils.data.DistributedSampler(
dataset_usda_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_sentinel_train = %s" % str(sampler_sentinel_train))
print("Sampler_hrrr_train = %s" % str(sampler_hrrr_train))
print("Sampler_usda_train = %s" % str(sampler_usda_train))
# val
sampler_sentinel_val = torch.utils.data.DistributedSampler(
dataset_sentinel_val, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_hrrr_val = torch.utils.data.DistributedSampler(
dataset_hrrr_val, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_usda_val = torch.utils.data.DistributedSampler(
dataset_usda_val, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_sentinel_val = %s" % str(sampler_sentinel_val))
print("Sampler_hrrr_val = %s" % str(sampler_hrrr_val))
print("Sampler_usda_val = %s" % str(sampler_usda_val))
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
# train
data_loader_sentinel_train = torch.utils.data.DataLoader(
dataset_sentinel_train, sampler=sampler_sentinel_train,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_hrrr_train = torch.utils.data.DataLoader(
dataset_hrrr_train, sampler=sampler_hrrr_train,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_usda_train = torch.utils.data.DataLoader(
dataset_usda_train, sampler=sampler_usda_train,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
# val
data_loader_sentinel_val = torch.utils.data.DataLoader(
dataset_sentinel_val, sampler=sampler_sentinel_train,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_hrrr_val = torch.utils.data.DataLoader(
dataset_hrrr_val, sampler=sampler_hrrr_train,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_usda_val = torch.utils.data.DataLoader(
dataset_usda_val, sampler=sampler_usda_train,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
pvt = PVTSimCLR(args.model_pvt, out_dim=args.embed_dim, context_dim=9)
if args.pvt_simclr:
checkpoint = torch.load(args.pvt_simclr, map_location='cpu')
pvt.load_state_dict(checkpoint['model'])
pvt.to(device)
pvt.eval()
model = MMST_ViT(out_dim=2, pvt_backbone=pvt, context_dim=9, dim=args.embed_dim, batch_size=args.batch_size)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
if args.eval:
evaluate(model, data_loader_sentinel_train, data_loader_hrrr_train, data_loader_usda_train, device)
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
# train
data_loader_sentinel_train.sampler.set_epoch(epoch)
data_loader_hrrr_train.sampler.set_epoch(epoch)
data_loader_usda_train.sampler.set_epoch(epoch)
# val
data_loader_sentinel_val.sampler.set_epoch(epoch)
data_loader_hrrr_val.sampler.set_epoch(epoch)
data_loader_usda_val.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, data_loader_sentinel_train, data_loader_hrrr_train, data_loader_usda_train,
optimizer, device, epoch, loss_scaler, log_writer=log_writer, args=args
)
if args.output_dir and (epoch % args.save_freq == 0 or epoch + 1 == args.epochs):
# evaluate
evaluate(model, data_loader_sentinel_val, data_loader_hrrr_val, data_loader_usda_val, device)
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch, }
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def train_one_epoch(model: torch.nn.Module,
data_loader_sentinel: Iterable, data_loader_hrrr: Iterable, data_loader_usda: Iterable,
optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler,
log_writer=None, args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
accum_iter = args.accum_iter
# data augmentation by following SimCLR
data_wrapper = DataWrapper()
criterion = torch.nn.MSELoss().to(device)
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
total_step = len(data_loader_sentinel) - 1
for data_iter_step, (x, y, z) in enumerate(zip(data_loader_sentinel, data_loader_hrrr, data_loader_usda)):
fips, max_mem = x[1][0], torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
num_grids = tuple(x[0].shape)[2]
print("Epoch: [{}] [ {} / {}] FIPS Code: {} Number of Grids: {} Max Mem: {}"
.format(epoch, data_iter_step, total_step, fips, num_grids, f"{max_mem:.0f}"))
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader_sentinel) + epoch, args)
# satellited imagery
x = x[0].to(device, non_blocking=True)
# short- and long-term weather variables
ys = y[0].to(device, non_blocking=True)
yl = y[1].to(device, non_blocking=True)
# USDA
z = z[0].to(device, non_blocking=True)
b, t, g, _, _, _ = x.shape
x = rearrange(x, 'b t g h w c -> (b t g) c h w')
x, _ = data_wrapper(x)
x = rearrange(x, '(b t g) c h w -> b t g c h w', b=b, t=t, g=g)
z_hat = model(x, ys=ys, yl=yl)
# log_scale
loss = criterion(z, z_hat)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader_sentinel) + epoch) * 1000)
log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(model: torch.nn.Module, data_loader_sentinel: Iterable, data_loader_hrrr: Iterable,
data_loader_usda: Iterable, device: torch.device):
# data augmentation by following SimCLR
data_wrapper = DataWrapper(train=False)
true_labels = torch.empty(0)
pred_labels = torch.empty(0)
total_step = len(data_loader_sentinel) - 1
for data_iter_step, (x, y, z) in enumerate(zip(data_loader_sentinel, data_loader_hrrr, data_loader_usda)):
fips, max_mem = x[1][0], torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
num_grids = tuple(x[0].shape)[2]
print(" Eval [ {} / {}] FIPS Code: {} Number of Grids: {} Max Mem: {}"
.format(data_iter_step, total_step, fips, num_grids, f"{max_mem:.0f}"))
# satellite imagery
x = x[0].to(device, non_blocking=True)
# short- and long-term weather variables
ys = y[0].to(device, non_blocking=True)
yl = y[1].to(device, non_blocking=True)
# USDA
z = z[0].to(device, non_blocking=True)
b, t, g, _, _, _ = x.shape
x = rearrange(x, 'b t g h w c -> (b t g) c h w')
x, _ = data_wrapper(x)
x = rearrange(x, '(b t g) c h w -> b t g c h w', b=b, t=t, g=g)
z_hat = model(x, ys=ys, yl=yl)
true_labels = torch.cat([true_labels, z.detach().cpu()], dim=0)
pred_labels = torch.cat([pred_labels, z_hat.detach().cpu()], dim=0)
true_labels = torch.exp(torch.flatten(true_labels[:, -1:], start_dim=0)).detach().cpu().numpy()
pred_labels = torch.exp(torch.flatten(pred_labels[:, -1:], start_dim=0)).detach().cpu().numpy()
rmse, r2, corr = metrics.evaluate(true_labels, pred_labels)
global best_metrics
best_metrics = [min(best_metrics[0], rmse), max(best_metrics[1], r2), max(best_metrics[2], corr)]
print("Metrics: RMSE: {} R_Squared: {} Corr: {}".format(f"{best_metrics[0]:.2f}", f"{ best_metrics[1]:.2f}", f"{best_metrics[2]:.2f}"))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)