-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathmodel.py
46 lines (39 loc) · 2.24 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch.nn as nn
from functions import ReverseLayerF
class CNNModel(nn.Module):
def __init__(self):
super(CNNModel, self).__init__()
self.feature = nn.Sequential()
self.feature.add_module('f_conv1', nn.Conv2d(3, 64, kernel_size=5))
self.feature.add_module('f_bn1', nn.BatchNorm2d(64))
self.feature.add_module('f_pool1', nn.MaxPool2d(2))
self.feature.add_module('f_relu1', nn.ReLU(True))
self.feature.add_module('f_conv2', nn.Conv2d(64, 50, kernel_size=5))
self.feature.add_module('f_bn2', nn.BatchNorm2d(50))
self.feature.add_module('f_drop1', nn.Dropout2d())
self.feature.add_module('f_pool2', nn.MaxPool2d(2))
self.feature.add_module('f_relu2', nn.ReLU(True))
self.class_classifier = nn.Sequential()
self.class_classifier.add_module('c_fc1', nn.Linear(50 * 4 * 4, 100))
self.class_classifier.add_module('c_bn1', nn.BatchNorm1d(100))
self.class_classifier.add_module('c_relu1', nn.ReLU(True))
self.class_classifier.add_module('c_drop1', nn.Dropout())
self.class_classifier.add_module('c_fc2', nn.Linear(100, 100))
self.class_classifier.add_module('c_bn2', nn.BatchNorm1d(100))
self.class_classifier.add_module('c_relu2', nn.ReLU(True))
self.class_classifier.add_module('c_fc3', nn.Linear(100, 10))
self.class_classifier.add_module('c_softmax', nn.LogSoftmax(dim=1))
self.domain_classifier = nn.Sequential()
self.domain_classifier.add_module('d_fc1', nn.Linear(50 * 4 * 4, 100))
self.domain_classifier.add_module('d_bn1', nn.BatchNorm1d(100))
self.domain_classifier.add_module('d_relu1', nn.ReLU(True))
self.domain_classifier.add_module('d_fc2', nn.Linear(100, 2))
self.domain_classifier.add_module('d_softmax', nn.LogSoftmax(dim=1))
def forward(self, input_data, alpha):
input_data = input_data.expand(input_data.data.shape[0], 3, 28, 28)
feature = self.feature(input_data)
feature = feature.view(-1, 50 * 4 * 4)
reverse_feature = ReverseLayerF.apply(feature, alpha)
class_output = self.class_classifier(feature)
domain_output = self.domain_classifier(reverse_feature)
return class_output, domain_output