forked from open-telemetry/opentelemetry-ebpf-profiler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhotspot_tracer.ebpf.c
865 lines (766 loc) · 33.9 KB
/
hotspot_tracer.ebpf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
// This file contains the code and map definitions for the Java Hotspot VM tracer
//
// Much of the code principles are derived from the Java's DTrace plugin:
// https://hg.openjdk.java.net/jdk-updates/jdk14u/file/default/src/java.base/solaris/native/libjvm_db/libjvm_db.c
// See also the host agent interpreterjvm.go for more references.
#include "bpfdefs.h"
#include "tracemgmt.h"
#include "types.h"
#include "errors.h"
// Information extracted from a JDK `CodeBlob` instance.
typedef struct CodeBlobInfo {
// The start address of the CodeBlob.
u64 address;
// Value of the `CodeBlob::_code_start` field.
u64 code_start;
// Value of the `CodeBlob::_code_end` field.
u64 code_end;
// Value of the `CompiledMethod::deopt_handler` field.
// Only contains valid data if the CodeBlob is of `nmethod` or `CompiledMethod` type.
u64 deopt_handler;
// Determines the frame type. First 4 bytes of the string pointed to by `CodeBlob::_name`.
u32 frame_type;
// Value of the `nmethod::orig_pc_offset` field.
// Only contains valid data if this CodeBlob is of `nmethod` type.
u32 orig_pc_offset;
// Value of the `CodeBlob::_frame_size` field.
u32 frame_size;
// Value of the `CodeBlob::_frame_complete_offset` field.
u32 frame_comp;
// Value of the `nmethod::compile_id` field.
// Only contains valid data if this CodeBlob is of `nmethod` type.
u32 compile_id;
} CodeBlobInfo;
// Context structure for information shared between all handlers in the HotSpot unwinder.
typedef struct HotspotUnwindInfo {
u64 sp;
u64 pc;
u64 fp;
// The value reported as the `file` field of the trace.
u64 file;
// The value reported as the `line` field of the trace.
struct {
// Subtype of the frame (JIT, interpreter).
u8 subtype;
// Either the delta between the code start and current PC (for compiled code) or the
// bytecode index (for interpreted code).
u32 pc_delta_or_bci;
// Validation cookie for the stored pointer.
// The value used here depends on the frame type.
u32 ptr_check;
} line;
} HotspotUnwindInfo;
// Returned by frame type handlers to decide how this frame should be unwound.
typedef enum HotspotUnwindAction {
UA_UNWIND_INVALID,
#if defined(__aarch64__)
UA_UNWIND_AARCH64_LR,
#endif
UA_UNWIND_PC_ONLY,
UA_UNWIND_FRAME_POINTER,
UA_UNWIND_FP_PC,
UA_UNWIND_FRAME,
UA_UNWIND_REGS,
UA_UNWIND_COMPLETE,
} HotspotUnwindAction;
// The number of hotspot frames to unwind per frame-unwinding eBPF program.
#define HOTSPOT_FRAMES_PER_PROGRAM 4
// The maximum number of HotSpot segmap lookup iterations. This is directly proportional
// to the size of JIT method code size. The longest sequence seen so far is from JDK8,
// and is 9 iterations. Include few extras.
#define HOTSPOT_SEGMAP_ITERATIONS 12
// The maximum number of JVM frame entries to search for a return address. In certain
// cases the JIT emits extra entries on the stack, and this controls the heuristic on
// how many extra entries are looked at. As reference the JVM async-profiler has similar
// heuristic and uses 7 slots on x86_64 (no search needed on aarch64).
#if defined(__x86_64__)
#define HOTSPOT_RA_SEARCH_SLOTS 6
#endif
// The hotspot frame type is distinguished from the first 4 characters of the CodeBlob
// type name. This provides constants for the needed strings.
#define FRAMETYPE_nmethod 0x74656d6e // "nmethod"
#define FRAMETYPE_native_nmethod 0x6974616e // "native nmethod"
#define FRAMETYPE_Interpreter 0x65746e49 // "Interpreter"
#define FRAMETYPE_vtable_chunks 0x62617476 // "vtable chunks"
bpf_map_def SEC("maps") hotspot_procs = {
.type = BPF_MAP_TYPE_HASH,
.key_size = sizeof(pid_t),
.value_size = sizeof(HotspotProcInfo),
// This is the maximum number of JVM processes. Few machines should ever exceed 256 simultaneous
// JVMs running. Increase this value if 256 turns out to be insufficient.
.max_entries = 256,
};
// Record a HotSpot frame
static inline __attribute__((__always_inline__))
ErrorCode push_hotspot(Trace *trace, u64 file, u64 line) {
return _push(trace, file, line, FRAME_MARKER_HOTSPOT);
}
// calc_line merges the three values to be encoded in a frame 'line'
static inline __attribute__((__always_inline__))
u64 calc_line(u8 subtype, u32 pc_or_bci, u32 ptr_check) {
return ((u64)subtype << 60) | ((u64)pc_or_bci << 32) | (u64)ptr_check;
}
#ifdef __x86_64__
// hotspot_addr_in_codecache checks if given address belongs to the JVM JIT code cache
__attribute__((always_inline)) inline static
bool hotspot_addr_in_codecache(u32 pid, u64 addr) {
PIDPage key = {};
key.prefixLen = BIT_WIDTH_PID + BIT_WIDTH_PAGE;
key.pid = __constant_cpu_to_be32(pid);
key.page = __constant_cpu_to_be64(addr);
// Check if we have the data for this virtual address
PIDPageMappingInfo* val = bpf_map_lookup_elem(&pid_page_to_mapping_info, &key);
if (!val) {
return false;
}
// The address is valid only if it is hotspot unwindable code.
int program;
u64 bias;
decode_bias_and_unwind_program(val->bias_and_unwind_program, &bias, &program);
return program == PROG_UNWIND_HOTSPOT;
}
#endif
// hotspot_find_codeblob maps a given PC to the CodeBlob* that describes the
// JIT information regarding the method (or stub) this PC belongs to. This uses
// information from the PidPageMapping for the PC.
static inline __attribute__((__always_inline__))
u64 hotspot_find_codeblob(const UnwindState *state, const HotspotProcInfo *ji)
{
unsigned long segment, codeblob, segmap_start;
u8 tag;
DEBUG_PRINT("jvm: -> %lx in code start %lx, offset %lx",
(unsigned long) state->pc, (unsigned long) state->text_section_bias, (unsigned long) state->text_section_offset);
// The segment map contains information on finding the control data
// structures given a PC. For documentation on this structure, see:
// https://hg.openjdk.java.net/jdk-updates/jdk14u/file/default/src/hotspot/share/memory/heap.cpp#l376
// Search for the code blob start using segmap. Hostagent will setup the mapping
// so that bias is the code segment start, and thus text_section_offset will hold
// the delta from start of the segment. It is shifted to get segment number.
segment = state->text_section_offset >> ji->segment_shift;
// Segment map start is put in to the PidPageMapping's file_id.
segmap_start = (state->text_section_id >> HS_TSID_SEG_MAP_BIT) & HS_TSID_SEG_MAP_MASK;
#pragma unroll
for (int i = 0; i < HOTSPOT_SEGMAP_ITERATIONS; i++) {
if (bpf_probe_read(&tag, sizeof(tag), (void*)(segmap_start + segment))) {
return 0;
}
DEBUG_PRINT("jvm: segment %lu, tag %u", segment, (unsigned) tag);
// Stop if done or the segment is marked free
if (tag == 0 || tag == 0xff) {
break;
}
segment -= tag;
}
if (tag != 0) {
// fail if we did not finish successfully
return 0;
}
codeblob = state->text_section_bias + (segment << ji->segment_shift) + ji->heapblock_size;
// We could check the HeapBlock::Header.used field, and possibly others
// for further validation of still valid block.
DEBUG_PRINT("jvm: -> mapped to codeblob %lx", codeblob);
return codeblob;
}
__attribute__((always_inline)) inline static
ErrorCode hotspot_handle_vtable_chunks(HotspotUnwindInfo *ui,
HotspotUnwindAction *action) {
DEBUG_PRINT("jvm: -> unwind vtable");
ui->line.subtype = FRAME_HOTSPOT_VTABLE;
#if defined(__x86_64__)
// On x86 this has only the return address on stack. Code adapted from JDK-8178287.
// This is something JVM itself does not handle right.
*action = UA_UNWIND_PC_ONLY;
#elif defined(__aarch64__)
// On ARM64, nothing is put on stack for this at all. Unwind via LR.
*action = UA_UNWIND_AARCH64_LR;
#endif
return ERR_OK;
}
__attribute__((always_inline)) inline static
ErrorCode hotspot_handle_interpreter(UnwindState *state,Trace *trace,
HotspotUnwindInfo *ui, HotspotProcInfo *ji,
HotspotUnwindAction *action) {
// Hotspot Interpreter has it's custom stack layout, and the unwinding is done based
// on frame pointer. No frame information is in the CodeBlob header.
// The Interpreter internal offsets seem relatively stable, but would need to be programmed
// based on JVM version as they are not included in the introspection data.
if (ui->fp < ui->sp || ui->fp >= ui->sp + 0x1000) {
DEBUG_PRINT("jvm: fp too far away to be interpreter frame");
goto error;
}
// Read the Interpreter stack frame registers
#define FP_OFFS 10
#if defined(__x86_64__)
// https://hg.openjdk.org/jdk-updates/jdk14u/file/default/src/hotspot/cpu/x86/frame_x86.hpp#l77
#define BCP_SLOT_JVM9 8
// https://github.com/openjdk/jdk8u/blob/master/hotspot/src/cpu/x86/vm/frame_x86.hpp#L117
#define BCP_SLOT_JVM8 7
// https://hg.openjdk.org/jdk-updates/jdk14u/file/default/src/hotspot/cpu/x86/templateInterpreterGenerator_x86.cpp#l66
#define BCP_REGISTER r13
#elif defined(__aarch64__)
// https://hg.openjdk.org/jdk-updates/jdk14u/file/default/src/hotspot/cpu/aarch64/frame_aarch64.hpp#l88
#define BCP_SLOT_JVM9 9
// https://github.com/openjdk/jdk8u/blob/master/hotspot/src/cpu/aarch64/vm/frame_aarch64.hpp#L125
#define BCP_SLOT_JVM8 7
// https://hg.openjdk.org/jdk-updates/jdk14u/file/default/src/hotspot/cpu/aarch64/assembler_aarch64.hpp#l136
#define BCP_REGISTER r22
#endif
u64 regs[FP_OFFS+2];
if (bpf_probe_read(regs, sizeof(regs), (void *) (ui->fp - sizeof(u64[FP_OFFS])))) {
DEBUG_PRINT("jvm: failed to read interpreter frame");
goto error;
}
u64 bcp;
if (trace->stack_len) {
// Interpreter frame has the BCP value stored
if (ji->jvm_version >= 9) {
// JDK9+ frame has new 'mirror' slot which offsets the BCP slot by one
bcp = regs[FP_OFFS - BCP_SLOT_JVM9];
} else {
// JDK8 and earlier
bcp = regs[FP_OFFS - BCP_SLOT_JVM8];
}
} else {
// When Interpreter frame code is interrupted, the real BCP is kept in
// a register for performance. On x86_64 ABI it's on r13.
bcp = state->BCP_REGISTER;
}
// Extract information from the frame
u64 method = regs[FP_OFFS - 3];
ui->sp = regs[FP_OFFS - 1];
ui->fp = regs[FP_OFFS];
ui->pc = regs[FP_OFFS + 1];
// Convert Byte Code Pointer (BCP) to Byte Code Index (BCI); that is, convert the pointer to
// be offset of the byte code. Mainly to reduce the amount needed for this data from 64-bits
// to 16-bits as the bytecode size is limited by JVM to 0xFFFE.
u64 cmethod;
if (bpf_probe_read(&cmethod, sizeof(cmethod), (void *) (method + ji->method_constmethod))) {
DEBUG_PRINT("jvm: failed to read interpreter cmethod");
goto error;
}
if (bcp >= cmethod + ji->cmethod_size) {
// Convert Code Pointer to Index (offset)
bcp -= cmethod + ji->cmethod_size;
}
DEBUG_PRINT("jvm: -> method = 0x%lx, cmethod = 0x%lx, bcp = %lx",
(unsigned long) method, (unsigned long) cmethod, (unsigned long) bcp);
if (bcp >= 0xffff) {
// Range check, and mark BCI invalid if outside JVM spec range
bcp = 0xffff;
}
// Interpreted frames send different pointers to host agent than other frame types.
ui->file = method;
ui->line.subtype = FRAME_HOTSPOT_INTERPRETER;
ui->line.pc_delta_or_bci = bcp;
ui->line.ptr_check = cmethod >> 3;
*action = UA_UNWIND_COMPLETE;
return ERR_OK;
error:
increment_metric(metricID_UnwindHotspotErrInterpreterFP);
return ERR_HOTSPOT_INTERPRETER_FP;
}
#if defined(__x86_64__)
__attribute__((always_inline)) inline static
void breadcrumb_fixup(HotspotUnwindInfo *ui) {
// Nothing to do: breadcrumbs are not a thing on X86.
}
#elif defined(__aarch64__)
__attribute__((always_inline)) inline static
void breadcrumb_fixup(HotspotUnwindInfo *ui) {
// On ARM64, for some calls, the JVM pushes "breadcrumbs" onto the stack to make unwinding
// easier for them. In the process, they unfortunately make it harder for us, since we have
// to detect these cases and fix up SP accordingly. Fortunately, the code-gen is very static,
// so it is easy to detect.
//
// The inserted code looks like this:
//
// adr x9, ret_label
// lea x8, RuntimeAddress(entry) ;; pseudo instruction, expands to series of mov/movk insns
// stp zr, r11, [sp, #-16]!
// blr x8
// ret_label:
// add sp, sp, 16
//
// Note: x8 and x9 are JVM reserved scratch registers.
//
// The actual code generating this lives here:
// https://github.com/openjdk/jdk/blob/jdk-17%2B35/src/hotspot/cpu/aarch64/aarch64.ad#L3731
u64 lookback;
bpf_probe_read(&lookback, sizeof(lookback), (void*)(ui->pc - sizeof(lookback)));
if (lookback == 0xd63f0100a9bf27ffULL /* stp; blr */) {
ui->sp += 0x10;
}
}
#endif
#if defined(__x86_64__)
__attribute__((always_inline)) inline static
ErrorCode hotspot_handle_prologue(const CodeBlobInfo *cbi, HotspotUnwindInfo *ui,
HotspotUnwindAction *action) {
// In the prologue code. It generally consists of stack 'banging' (check for stack
// overflow), pushing FP, and finally allocating rest of the stack of 'frame_size'.
if (ui->pc >= cbi->code_start + cbi->frame_comp - 4) {
// Almost complete frame. Assume FP and PC on stack, and it's only the
// final stack allocation opcodes to be executed (add sp).
// TODO(tteras): This check is incomplete. There is some nasty variations
// which require looking at the prologue opcodes.
DEBUG_PRINT("jvm: -> unwinding incomplete frame (fp+pc)");
*action = UA_UNWIND_FP_PC;
return ERR_OK;
}
// early in the prologue. assume only return address on stack
DEBUG_PRINT("jvm: -> unwinding incomplete frame (pc)");
*action = UA_UNWIND_PC_ONLY;
return ERR_OK;
}
#elif defined(__aarch64__)
__attribute__((always_inline)) inline static
ErrorCode hotspot_handle_prologue(const CodeBlobInfo *cbi, HotspotUnwindInfo *ui,
HotspotUnwindAction *action) {
// On ARM64, the prologue consists of various assembly snippets, most of which we aren't really
// concerned with. This includes stuff like stack banging (which, other than the name might
// suggest, doesn't actually write SP directly), initializing SVE registers and similar setup
// stuff. It ends with instructions generated according to the following pseudo-code:
//
// >>> if frame_size < (1 << 9) + 16:
// >>> sub sp, sp, frame_size
// >>> stp fp, lr, [sp, frame_size - 16]
// >>> if jdk_option_enabled(PreserveFramePointer):
// >>> add fp, sp, frame_size - 16
// >>> else:
// >>> stp fp, lr, [sp, -16]!
// >>> if jdk_option_enabled(PreserveFramePointer):
// >>> mov fp, sp
// >>> if frame_size < (1 << 12) + 16:
// >>> sub sp, sp, frame_size - 16
// >>> else:
// >>> # Note: x8 is reserved as a scratch register
// >>> mov x8, frame_size - 16
// >>> sub sp, sp, x8
//
// This general logic lives in the aarch64 variant of `MachPrologNode::emit`:
// https://github.com/openjdk/jdk/blob/jdk-17%2B35/src/hotspot/cpu/aarch64/aarch64.ad#L1883
// The part that we care about resides in `MacroAssembler::build_frame`:
// https://github.com/openjdk/jdk/blob/jdk-17%2B35/src/hotspot/cpu/aarch64/macroAssembler_aarch64.cpp#L4445
//
// Frame sizes larger than (1 << 9) are exceedingly rare, so in practice, pretty much all
// prologues end like this (assuming `PreserveFramePointer` isn't being used):
//
// >>> sub sp, sp, frame_size
// >>> stp fp, lr, [sp, frame_size - 16]
//
// To unwind this prologue, all we need to do is to check whether the `sub` has already been
// executed, and, if it was, to fix up the stack pointer accordingly. After that, we simply
// unwind via the return address in the LR register.
// Is the PC on the `stp` instruction?
if (ui->pc == cbi->code_start + cbi->frame_comp - 4) {
ui->sp += cbi->frame_size;
}
*action = UA_UNWIND_AARCH64_LR;
return ERR_OK;
}
#endif
#if defined(__x86_64__)
__attribute__((always_inline)) inline static
bool hotspot_handle_epilogue(const CodeBlobInfo *cbi, HotspotUnwindInfo *ui,
HotspotUnwindAction *action) {
// On X86, epilogue handling is currently not implemented.
return false;
}
#elif defined(__aarch64__)
__attribute__((always_inline)) inline static
bool hotspot_handle_epilogue(const CodeBlobInfo *cbi, HotspotUnwindInfo *ui,
HotspotUnwindAction *action) {
// On ARM64, the epilogue code is generated roughly like this:
//
// >>> remove_frame:
// >>> if framesize < (1 << 9) + 16:
// >>> ldp fp, lr, [sp, #(frame_size - 16)]
// >>> add sp, sp, frame_size
// >>> elif frame_size < (1 << 12) + 16:
// >>> add sp, sp, (frame_size - 16)
// >>> ldp fp, lr, [sp, #16]!
// >>> else:
// >>> mov rN, frame_size - 16
// >>> add sp, sp, rN
// >>> ldp fp, lr, [sp, #16]!
// >>> safepoint_poll:
// >>> ldr x8, [x28, <polling word offset>]
// >>> cmp sp, x8
// >>> b.hi <slow_path>
// >>> generated by unknown code:
// >>> ret
//
// In Java, it is extremely hard to create a function with a frame size larger than a few words.
// Handling the cases for the larger stack sizes is not really worth the instructions it would
// take up in the eBPF binary. The code below thus only handles the case where the frame size is
// smaller than `(1 << 9) + 16`.
if (cbi->frame_size >= (1 << 9) + 16) {
// Frame sizes larger than this are extremely rare: skip these for now.
increment_metric(metricID_UnwindHotspotUnsupportedFrameSize);
return false;
}
// Determine the search pattern for the epilogue begin of this function by assembling the aarch64
// instructions that we expect the JRE to generate for the epilogue.
// Encode `ldp fp, lr, [sp, #(frame_size - 16)]`. The OR inserts the immediate.
// https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/LDP--Load-Pair-of-Registers-
u64 ldp = 0xa9407bfd | ((((u64)cbi->frame_size - 16) / 8) << 15);
// Encode `add sp, sp, frame_size`. The OR again places the immediate.
// https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/ADD--immediate---Add--immediate--
u64 add = 0x910003ff | ((u64)cbi->frame_size << 10);
#define EPI_LOOKBACK 6
#define INSN_LEN 4
// Scan for the epilogue pattern, using a 64-bit wide sliding window with a 32-bit stride.
u8 find_offset = 0;
u32 window[EPI_LOOKBACK];
u64 needle = ldp | (add << 32);
bpf_probe_read(window, sizeof(window), (void*)(ui->pc - sizeof(window) + INSN_LEN));
#pragma unroll
for (; find_offset < EPI_LOOKBACK - 1; ++find_offset) {
if (*(u64*)&window[find_offset] == needle) {
goto pattern_found;
}
}
// Still here? Pattern not found, give up.
return false;
pattern_found:;
// Index Epilogue code Action to take when PC on instruction
// ----- ------------- -------------------------------------
// 0 ldp fp, lr, [sp, #(frame_size - 16)] Bail out and let other code handle this case.
// 1 add sp, sp, frame_size Fix SP, then LR based unwinding.
// 2 ldr x8, [x28, <polling word>] LR based unwinding.
// 3 cmp sp, x8 LR based unwinding.
// 4 b.hi <slow_path> LR based unwinding.
// 5 ret LR based unwinding.
//
// When we find the ldp/add pattern in our look-back window, it thus means that we need to perform
// LR based unwinding. Since the look-back window ends at PC, the previous pattern search will not
// find the pattern and have bailed out when the PC is on the `ldp`, which implicitly handles the
// unwind action for the `ldp`.
// If we're on the `add sp, sp, frame_size`, we need to fix up SP. The -1 is because the pattern
// is two instructions wide.
u8 epi_idx = EPI_LOOKBACK - 1 - find_offset;
if (epi_idx == 1) {
ui->sp += cbi->frame_size;
}
DEBUG_PRINT("jvm: epilogue case");
*action = UA_UNWIND_AARCH64_LR;
return true;
#undef INSN_LEN
#undef EPI_LOOKBACK
}
#endif
__attribute__((always_inline)) inline static
ErrorCode hotspot_handle_nmethod(const CodeBlobInfo *cbi, Trace *trace,
HotspotUnwindInfo *ui, HotspotProcInfo *ji,
HotspotUnwindAction *action) {
// setup frame subtype, and get the native method _compile_id as pointer cookie
// as it is unique to the compilation result
ui->line.subtype = FRAME_HOTSPOT_NATIVE;
ui->line.ptr_check = cbi->compile_id;
u64 deopt_handler = cbi->deopt_handler;
if (ji->jvm_version <= 8) {
// JDK7/8: Deoptimization handler is an uint32 offset from the code blob start
deopt_handler = cbi->address + (deopt_handler & 0xffffffff);
}
if (ui->pc == deopt_handler) {
// If the PC where execution is to continue is the deoptimization handler, the frame
// has been deoptimized. This happens when something happened in the upper frames,
// that broke the assumptions used at JIT compile time.
// In practice the JVM rewrote the return address at the callers frame. It also stores
// original PC before rewriting. This code retrieves that. For the deoptimization handler
// generation look at:
// https://hg.openjdk.java.net/jdk-updates/jdk14u/file/default/src/hotspot/cpu/x86/sharedRuntime_x86_64.cpp#l2906
// Similar fixup is strategy for external unwinding is in:
// https://hg.openjdk.java.net/jdk-updates/jdk14u/file/default/src/java.base/solaris/native/libjvm_db/libjvm_db.c#l1059
u64 orig;
if (bpf_probe_read(&orig, sizeof(orig), (void *) (ui->sp + cbi->orig_pc_offset)) ||
orig < cbi->code_start || orig >= cbi->code_end) {
// Just keep using the deoptimization point PC. It usually unwinds ok, and symbolizes
// to the correct function. Potentially inlined scopes, and source line number is lost.
DEBUG_PRINT("jvm: -> deoptimized frame, pc recovery failed");
} else {
DEBUG_PRINT("jvm: -> deoptimized frame, pc recovered as 0x%lx (from sp+%d)", (unsigned long) orig,
(s32) cbi->orig_pc_offset);
ui->pc = orig;
ui->line.pc_delta_or_bci = ui->pc - cbi->code_start;
}
}
// Are we in the prologue?
if (ui->pc < cbi->code_start + cbi->frame_comp) {
return hotspot_handle_prologue(cbi, ui, action);
}
// Attempt prologue unwinding.
if (hotspot_handle_epilogue(cbi, ui, action)) {
return ERR_OK;
}
if (ui->fp >= ui->sp && ui->fp < ui->sp + cbi->frame_size + sizeof(u64[6])) {
// FP is in a "sane" range for a frame-pointer based function:
// Between SP and SP+frame_size+few extra words.
// That is, FP points to valid stack position that could be the frame. If it FP was used
// as a general-purpose register, it would likely be something outside this range.
// The native functions always store FP. It is valid frame pointer if this is the topmost
// native frame after Interpreter, or always with -XX:+PreserveFramePointer.
// NOTE: some other instances used frame_size * 2, but that can cause false positives when
// frame_size is large. The FP would look valid, but if using it, we'd be actually jumping
// over one or more stack frames. This happens when none of the function in between modify
// FP. Also, if we skipped the functions, we would not be able to restore FP from
// the skipped frames and potentially cause the whole unwinding to fail in later stage.
DEBUG_PRINT("jvm: -> using frame pointer (frame size %ld)", (long) (ui->fp - ui->sp));
*action = UA_UNWIND_FRAME_POINTER;
return ERR_OK;
}
// The real JVM has the same limitation. async-profiler has some heuristic examples for this.
breadcrumb_fixup(ui);
// Assume complete frame without frame pointer, use the CodeBlob frame_size.
ui->sp += cbi->frame_size;
#ifndef HOTSPOT_RA_SEARCH_SLOTS
// Frame size can be trusted.
*action = UA_UNWIND_REGS;
return ERR_OK;
#else
// On x86, the generated code can occasionally push extra words to the stack and it might
// be more than the advertised `frame_size`. The official unwinder seems to not handle this
// case properly. This follows the Hotspot frame::safe_for_sender and async-profiler heuristic
// to assume that PC points to valid code location inside the CodeCache. This is true for all
// native methods as they are always called by another native method or a stub.
//
// For EBPF simplicity, this just verifies that the PC address is inside the active memory
// mapping area. Additional checking could be done to search for CodeBlob and to verify that
// the value is actually inside the code area and that the CodeBlob is in valid state.
u64 stack[HOTSPOT_RA_SEARCH_SLOTS];
bpf_probe_read(stack, sizeof(stack), (void*)(ui->sp - sizeof(u64)));
for (int i = 0; i < HOTSPOT_RA_SEARCH_SLOTS; i++, ui->sp += sizeof(u64)) {
DEBUG_PRINT("jvm: -> %u pc candidate 0x%lx", i, (unsigned long)stack[i]);
if (hotspot_addr_in_codecache(trace->pid, stack[i])) {
DEBUG_PRINT("jvm: -> unwinding complete frame + %d words", i);
*action = UA_UNWIND_REGS;
return ERR_OK;
}
}
increment_metric(metricID_UnwindHotspotErrInvalidRA);
return ERR_HOTSPOT_INVALID_RA;
#endif
}
__attribute__((always_inline)) inline static
ErrorCode hotspot_handle_stub_fallback(const CodeBlobInfo *cbi,
HotspotUnwindAction *action) {
DEBUG_PRINT("jvm: -> unwind stub fallback path");
if (!cbi->frame_size) {
// "StubRoutines (1)" and "StubRoutines (2)" will have zero frame_size,
// but valid frame pointer.
*action = UA_UNWIND_FRAME_POINTER;
return ERR_OK;
}
*action = UA_UNWIND_FRAME;
return ERR_OK;
}
__attribute__((always_inline)) inline static
ErrorCode hotspot_handle_stub(const UnwindState *state, const CodeBlobInfo *cbi,
HotspotUnwindInfo *ui, HotspotUnwindAction *action) {
ui->line.subtype = FRAME_HOTSPOT_STUB;
#ifdef __aarch64__
u64 info = state->text_section_id;
if (!(info & (1UL << HS_TSID_IS_STUB_BIT))) {
return hotspot_handle_stub_fallback(cbi, action);
}
DEBUG_PRINT("jvm: -> unwind stub with unwind info 0x%016llX", info);
if (info & (1UL << HS_TSID_HAS_FRAME_BIT)) {
*action = UA_UNWIND_FRAME_POINTER;
return ERR_OK;
}
u64 delta = (info >> HS_TSID_STACK_DELTA_BIT);
delta &= HS_TSID_STACK_DELTA_MASK;
delta *= HS_TSID_STACK_DELTA_SCALE;
ui->sp += delta;
*action = UA_UNWIND_AARCH64_LR;
return ERR_OK;
#else
return hotspot_handle_stub_fallback(cbi, action);
#endif
}
__attribute__((always_inline)) inline static
ErrorCode hotspot_execute_unwind_action(CodeBlobInfo *cbi, HotspotUnwindAction action,
HotspotUnwindInfo *ui, UnwindState *state, Trace *trace) {
switch (action) {
case UA_UNWIND_INVALID:
return ERR_UNREACHABLE;
#if defined(__aarch64__)
case UA_UNWIND_AARCH64_LR:
if (!state->lr_valid) {
increment_metric(metricID_UnwindHotspotErrLrUnwindingMidTrace);
return ERR_HOTSPOT_LR_UNWINDING_MID_TRACE;
}
ui->pc = state->lr;
goto unwind_complete;
#endif
case UA_UNWIND_PC_ONLY:
cbi->frame_size = sizeof(u64);
goto unwind_frame;
case UA_UNWIND_FRAME_POINTER:
ui->sp = ui->fp;
// fallthrough
case UA_UNWIND_FP_PC:
cbi->frame_size = sizeof(u64[2]);
// fallthrough
case UA_UNWIND_FRAME:
unwind_frame:
ui->sp += cbi->frame_size;
// fallthrough
case UA_UNWIND_REGS: {
u64 frame[2];
bpf_probe_read(frame, sizeof(frame), (void *) (ui->sp - sizeof(frame)));
ui->pc = frame[1];
if (cbi->frame_size >= sizeof(frame)) {
DEBUG_PRINT("jvm: -> recover fp");
ui->fp = frame[0];
}
} // fallthrough
case UA_UNWIND_COMPLETE: {
unwind_complete:;
u64 line = calc_line(ui->line.subtype, ui->line.pc_delta_or_bci, ui->line.ptr_check);
ErrorCode error = push_hotspot(trace, ui->file, line);
if (error) {
return error;
}
DEBUG_PRINT("jvm: -> pc: %lx, sp: %lx, fp: %lx",
(unsigned long) ui->pc, (unsigned long) ui->sp, (unsigned long) ui->fp);
state->pc = ui->pc;
state->sp = ui->sp;
state->fp = ui->fp;
#if defined(__aarch64__)
state->lr_valid = false;
#endif
increment_metric(metricID_UnwindHotspotFrames);
}
}
return ERR_OK;
}
// Reads information from the CodeBlob for the current PC location from the JVM process.
__attribute__((always_inline)) inline static
ErrorCode hotspot_read_codeblob(const UnwindState *state, const HotspotProcInfo *ji,
HotspotUnwindScratchSpace *scratch, CodeBlobInfo *cbi) {
// Find the CodeBlob (JIT function metadata) for this PC.
cbi->address = hotspot_find_codeblob(state, ji);
if (!cbi->address) {
DEBUG_PRINT("jvm: no codeblob matched for pc");
increment_metric(metricID_UnwindHotspotErrNoCodeblob);
return ERR_HOTSPOT_NO_CODEBLOB;
}
// Read the CodeBlob. Note that this is intentionally a memory over-read in most cases: we read
// the entire size of our CodeBlob buffer despite the CodeBlob typically being smaller than that
// buffer. This way, we don't have to do a second read for the frame type in order to determine
// the exact CodeBlob/CompiledMethod/nmethod size. The CodeBlob is allocated in the JIT area,
// preceding the actual JIT code and data for the function. It is thus exceedingly unlikely for
// us to accidentally read into a guard / unallocated page despite the over-read.
if (bpf_probe_read(scratch->codeblob, sizeof(scratch->codeblob), (void*)cbi->address)) {
goto read_error_exit;
}
// Make the verifier happy. No bound checks required for the remaining offsets: they are u8, and
// the verifier is aware that their maximum value is smaller than our `codeblob` buffer.
if (ji->compiledmethod_deopt_handler + sizeof(u64) > sizeof(scratch->codeblob) ||
ji->nmethod_compileid + sizeof(u32) > sizeof(scratch->codeblob) ||
ji->nmethod_orig_pc_offset + sizeof(u64) > sizeof(scratch->codeblob)) {
return ERR_UNREACHABLE;
}
// Extract the needed CodeBlob fields.
cbi->code_start = *(u64*)(scratch->codeblob + ji->codeblob_codestart);
cbi->code_end = *(u64*)(scratch->codeblob + ji->codeblob_codeend);
cbi->frame_size = *(u32*)(scratch->codeblob + ji->codeblob_framesize) * 8;
cbi->frame_comp = *(u32*)(scratch->codeblob + ji->codeblob_framecomplete);
cbi->compile_id = *(u32*)(scratch->codeblob + ji->nmethod_compileid);
cbi->orig_pc_offset = *(u32*)(scratch->codeblob + ji->nmethod_orig_pc_offset);
cbi->deopt_handler = *(u64*)(scratch->codeblob + ji->compiledmethod_deopt_handler);
// `frame_type` is actually the first 4 characters of the CodeBlob type name.
u64 code_name_addr = *(u64*)(scratch->codeblob + ji->codeblob_name);
if (bpf_probe_read(&cbi->frame_type, sizeof(cbi->frame_type), (void*)code_name_addr)) {
goto read_error_exit;
}
if (ji->jvm_version <= 8) {
// JDK7/8: Code start and end are actually uint32 offsets from the code blob start
cbi->code_start = cbi->address + (cbi->code_start & 0xffffffff);
cbi->code_end = cbi->address + (cbi->code_end & 0xffffffff);
}
DEBUG_PRINT("jvm: -> code %lx-%lx",
(unsigned long)cbi->code_start, (unsigned long)cbi->code_end);
DEBUG_PRINT("jvm: -> frame_complete %u, frame_size %u, frame_type 0x%x",
cbi->frame_comp, cbi->frame_size, cbi->frame_type);
return 0;
read_error_exit:
DEBUG_PRINT("jvm: failed to read codeblob");
increment_metric(metricID_UnwindHotspotErrInvalidCodeblob);
return ERR_HOTSPOT_INVALID_CODEBLOB;
}
// hotspot_unwind_one_frame fully unwinds one HotSpot frame
static ErrorCode hotspot_unwind_one_frame(PerCPURecord *record, HotspotProcInfo *ji) {
UnwindState *state = &record->state;
Trace *trace = &record->trace;
HotspotUnwindInfo ui;
increment_metric(metricID_UnwindHotspotAttempts);
ui.pc = state->pc;
ui.sp = state->sp;
ui.fp = state->fp;
// Read the CodeBlob.
CodeBlobInfo cbi;
ErrorCode err = hotspot_read_codeblob(state, ji, &record->hotspotUnwindScratch, &cbi);
if (err) {
return err;
}
// For most frame types, the CodeBlob address also serves as the file.
ui.file = cbi.address;
ui.line.ptr_check = cbi.frame_type;
ui.line.pc_delta_or_bci = ui.pc - cbi.code_start;
HotspotUnwindAction action = UA_UNWIND_INVALID;
switch (cbi.frame_type) {
case FRAMETYPE_nmethod: // JIT-compiled method
case FRAMETYPE_native_nmethod: // stub to call C-implemented java method
err = hotspot_handle_nmethod(&cbi, trace, &ui, ji, &action);
break;
case FRAMETYPE_Interpreter: // main Interpreter program running byte code
err = hotspot_handle_interpreter(state, trace, &ui, ji, &action);
break;
case FRAMETYPE_vtable_chunks: // megamorphic interface call site
err = hotspot_handle_vtable_chunks(&ui, &action);
break;
default: // stubs and intrinsic functions (too many to list)
err = hotspot_handle_stub(state, &cbi, &ui, &action);
}
if (err) {
return err;
}
return hotspot_execute_unwind_action(&cbi, action, &ui, state, trace);
}
// unwind_hotspot is the entry point for tracing when invoked from the native tracer
// and it recursive unwinds all HotSpot frames and then jumps back to unwind further
// native frames that follow.
SEC("perf_event/unwind_hotspot")
int unwind_hotspot(struct pt_regs *ctx) {
PerCPURecord *record = get_per_cpu_record();
if (!record)
return -1;
Trace *trace = &record->trace;
pid_t pid = trace->pid;
DEBUG_PRINT("==== jvm: unwind %d ====", trace->stack_len);
HotspotProcInfo *ji = bpf_map_lookup_elem(&hotspot_procs, &pid);
if (!ji) {
DEBUG_PRINT("jvm: no HotspotProcInfo for this pid");
return 0;
}
int unwinder = PROG_UNWIND_STOP;
ErrorCode error = ERR_OK;
#pragma unroll
for (int i = 0; i < HOTSPOT_FRAMES_PER_PROGRAM; i++) {
unwinder = PROG_UNWIND_STOP;
error = hotspot_unwind_one_frame(record, ji);
if (error) {
break;
}
error = get_next_unwinder_after_native_frame(record, &unwinder);
if (error || unwinder != PROG_UNWIND_HOTSPOT) {
break;
}
}
record->state.unwind_error = error;
tail_call(ctx, unwinder);
DEBUG_PRINT("jvm: tail call for next frame unwinder (%d) failed", unwinder);
return -1;
}