-
Notifications
You must be signed in to change notification settings - Fork 3
/
bitblt.lisp
558 lines (432 loc) · 19.6 KB
/
bitblt.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
;; -*- Mode:Lisp; Syntax:Common-Lisp; Package: (*SIM-I COMMON-LISP-GLOBAL); Muser: Yes -*-
(in-package :*sim-i)
;;;> *+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
;;;>
;;;> The Thinking Machines *Lisp Simulator is in the public domain.
;;;> You are free to do whatever you like with it, including but
;;;> not limited to distributing, modifying, and copying.
;;;>
;;;> *+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+
;;; Author: JP Massar.
;;;; ****************************************************************************
;;;;
;;;; BITBLT FUNCTIONS
;;;;
;;;; ****************************************************************************
(defun parse-cube-arguments (source-pvar dest-array array-offset cube-address-start cube-address-end)
(assert (or (null source-pvar) (pvarp source-pvar)) () "The pvar argument is neither unspecified nor a pvar.")
(assert (or (null dest-array) (vectorp dest-array)) () "The array argument is neither unspecified nor a 1-d array.")
(assert (and (integerp array-offset) (not (minusp array-offset))) () "The array-offset is not a non-negative integer.")
(when dest-array
(assert (or (< array-offset (array-total-size dest-array))
(zerop (array-total-size dest-array)))
()
"The dest-array is ~D elements long, but you provided an array-offset of ~D."
(array-total-size dest-array) array-offset
))
(assert (and (integerp cube-address-start) (<= 0 cube-address-start (1- *number-of-processors-limit*))) ()
"The cube-address-start, ~S, is not an integer between 0 and ~D, which is the range of the active vp set."
cube-address-start *number-of-processors-limit*
)
(assert (and (integerp cube-address-end)
(>= cube-address-end cube-address-start)
(<= cube-address-end *number-of-processors-limit*)
)
()
"The cube-address-end, ~S, is not an integer between the value of cube-address-start, ~D, and ~D, the ~@
upper limit of cube addresses for the active vp set."
cube-address-end cube-address-start *number-of-processors-limit*
)
)
(defun parse-pvar-to-array-arguments (source-pvar dest-array array-offset cube-address-start cube-address-end)
(parse-cube-arguments source-pvar dest-array array-offset cube-address-start cube-address-end)
(when dest-array
(let ((number-of-usable-array-elements (- (array-total-size dest-array) array-offset))
(number-of-processors-to-read (- cube-address-end cube-address-start))
)
(assert (>= number-of-usable-array-elements number-of-processors-to-read) ()
"Starting at array-offset ~D, the array provided has ~D usable elements. But you are attempting to~@
read ~D elements out of the CM"
array-offset number-of-usable-array-elements number-of-processors-to-read
))))
(defun parse-array-to-pvar-arguments (source-pvar dest-array array-offset cube-address-start cube-address-end)
(parse-cube-arguments source-pvar dest-array array-offset cube-address-start cube-address-end)
(when dest-array
(let ((number-of-usable-array-elements (- (array-total-size dest-array) array-offset))
(number-of-processors-to-write (- cube-address-end cube-address-start))
)
(assert (>= number-of-usable-array-elements number-of-processors-to-write) ()
"Starting at array-offset ~D, the array provided has ~D elements. But you are attempting to~@
write ~D elements into the CM"
array-offset number-of-usable-array-elements number-of-processors-to-write
))))
(*defun pvar-to-array
(source-pvar &optional dest-array
&key
(array-offset 0)
(cube-address-start 0)
(cube-address-end nil cube-address-end-provided)
(start 0 start-provided)
(end nil end-provided)
)
(when start-provided (setq cube-address-start start))
(when end-provided (setq cube-address-end end))
(simple-pvar-argument!! source-pvar)
(assert (pvarp source-pvar) () "The source-pvar argument to pvar-to-array must be a pvar")
(*with-vp-set (pvar-vp-set source-pvar)
(when (and (not cube-address-end-provided)
(not end-provided)
)
(setq cube-address-end *number-of-processors-limit*))
(parse-pvar-to-array-arguments source-pvar dest-array array-offset cube-address-start cube-address-end)
(cond
;; If we request no processors to read data from, then there
;; is nothing to do.
((= cube-address-start cube-address-end) dest-array)
;; It is impossible to read data out of a void pvar.
((void-pvar-p source-pvar)
(error "The pvar ~S is uninitialized. You cannot read data out of it!" source-pvar)
)
(t
(when (null dest-array)
(let ((number-of-processors-to-read-from (- cube-address-end cube-address-start)))
(setq dest-array (make-array (+ number-of-processors-to-read-from array-offset)))
))
(do ((j cube-address-start (1+ j)))
((= j cube-address-end))
(setf (aref dest-array (+ array-offset (- j cube-address-start)))
(pref source-pvar j)))
dest-array
))))
(*defun array-to-pvar
(source-array &optional (dest-pvar nil)
&key
(array-offset 0)
(cube-address-start 0)
(cube-address-end nil cube-address-end-provided)
(start 0 start-provided)
(end nil end-provided)
)
(when start-provided (setq cube-address-start start))
(when end-provided (setq cube-address-end end))
(flet
((internal-array-to-pvar ()
;; check the arguments.
(when (and (not cube-address-end-provided)
(not end-provided)
)
(setq cube-address-end *number-of-processors-limit*))
(parse-array-to-pvar-arguments dest-pvar source-array array-offset cube-address-start cube-address-end)
(*let (return-pvar received-value?)
(*all (*set received-value? nil!!))
(do ((j cube-address-start (1+ j)))
((= j cube-address-end))
(*setf (pref return-pvar j) (aref source-array (+ array-offset (- j cube-address-start))))
(*setf (pref received-value? j) t)
)
(when dest-pvar
(*when received-value?
(*set dest-pvar return-pvar)
))
return-pvar
)
))
;; Select the vp set of the destination pvar.
;; If it's not provided use the currently active vp set.
(if dest-pvar
(*with-vp-set (pvar-vp-set dest-pvar) (internal-array-to-pvar) dest-pvar)
(internal-array-to-pvar)
)
))
(defun next-subhypergrid-coordinates
(start-coordinates end-coordinates current-coordinates n-dimensions)
(labels
((increment-component
(start-coordinates end-coordinates current-coordinates n-dimensions component-index)
(if (< (svref current-coordinates component-index)
(svref end-coordinates component-index))
(incf (svref current-coordinates component-index))
(if (zerop component-index)
nil
(progn
(setf (svref current-coordinates component-index)
(svref start-coordinates component-index))
(increment-component
start-coordinates end-coordinates current-coordinates
n-dimensions (1- component-index)
))))))
(if
(increment-component
start-coordinates end-coordinates current-coordinates n-dimensions (1- n-dimensions))
current-coordinates
nil
)))
(defmacro with-hypergrid-coordinates-iterated
;; Iterate over a sub-hypergrid defined by start-grid-address and end-grid-address
;; in row-major order. A cube address value and a grid address value as a vector
;; of the current coordinate in hyperspace are bound on each iteration.
((start-grid-address end-grid-address)
(grid-vector-address-symbol cube-address-symbol)
&rest body)
(let ((start-vector-symbol (gensym))
(end-vector-symbol (gensym))
(last-vector-symbol (gensym))
(n-dimensions-symbol (gensym))
(cube-address-array-symbol (gensym))
)
`(let* ((,start-vector-symbol (concatenate 'vector ,start-grid-address))
(,end-vector-symbol (concatenate 'vector ,end-grid-address))
(,last-vector-symbol (map 'vector #'1- ,end-vector-symbol))
(,grid-vector-address-symbol (copy-seq ,start-vector-symbol))
(,n-dimensions-symbol (length ,start-vector-symbol))
(,cube-address-symbol nil)
(,cube-address-array-symbol (vp-set-array-of-cube-addresses *current-vp-set*))
)
(loop
(progn
(setq ,cube-address-symbol
(internal-cube-address-from-grid-address-vector
,cube-address-array-symbol
,grid-vector-address-symbol
))
,@body
(when (null (next-subhypergrid-coordinates
,start-vector-symbol ,last-vector-symbol
,grid-vector-address-symbol ,n-dimensions-symbol
))
(return)
)))
)))
(defun check-grid-function-arguments (dest-array array-offset grid-start grid-end)
(assert (listp array-offset) () "The array-offset argument is neither unspecified nor a list")
(assert (listp grid-start) () "The grid-start argument is neither unspecified nor a list")
(assert (listp grid-end) () "The grid-end argument is neither unspecified nor a list")
(when dest-array
(assert (and (not (pvarp dest-array)) (arrayp dest-array)) ()
"The array argument (~A) is neither unspecified nor an array" dest-array
)
(assert (eql *number-of-dimensions* (array-rank dest-array)) ()
"There are ~D dimensions in the active vp set, but ~D dimensions in the array provided (~A)"
*number-of-dimensions* (array-rank dest-array) dest-array
))
(assert (eql (length array-offset) *number-of-dimensions*) ()
"There are ~D dimensions in the active vp set, ~
but you provided an array-offset, (~S), with a different number of dimensions"
(array-rank dest-array) array-offset
)
(assert (eql (length grid-start) *number-of-dimensions*) ()
"There are ~D dimensions in the active vp set, but you provided a grid-start argument ~S of different rank"
*number-of-dimensions* grid-start
)
(assert (eql (length grid-end) *number-of-dimensions*) ()
"There are ~D dimensions in the active vp set, but you provided a grid-end argument ~S of different rank"
*number-of-dimensions* grid-end
)
(dotimes (j *number-of-dimensions*)
(let ((start-coordinate (nth j grid-start)))
(assert (and (integerp start-coordinate) (< -1 start-coordinate (nth j *current-cm-configuration*))) ()
"Coordinate ~D of grid-start (~S) is not an integer in the range (0,~D)"
j start-coordinate (nth j *current-cm-configuration*)
)))
(dotimes (j *number-of-dimensions*)
(let ((end-coordinate (nth j grid-end)))
(assert (and (integerp end-coordinate) (<= (nth j grid-start) end-coordinate (nth j *current-cm-configuration*))) ()
"Coordinate ~D of grid-end (~S) is not an integer >= the corresponding grid-start coordinate (~D), ~
and <= ~D, the size of dimension ~D in the active vp set"
j end-coordinate (nth j grid-start) (nth j *current-cm-configuration*) j
)))
)
(defun parse-pvar-to-array-grid-arguments (source-pvar dest-array array-offset grid-start grid-end)
(declare (ignore source-pvar))
(check-grid-function-arguments dest-array array-offset grid-start grid-end)
(let ((pvar-subgrid-extent (map 'list #'- grid-end grid-start)))
(when dest-array
(let* ((array-dimensions (array-dimensions dest-array))
(array-subgrid-extent (map 'list #'- array-dimensions array-offset))
)
(dotimes (j *number-of-dimensions*)
(assert (<= (nth j pvar-subgrid-extent) (nth j array-subgrid-extent)) ()
"Along dimension ~D, you are trying to extract ~D rows from the CM, but the array you provided, (~A), ~
given an array-offset of ~S, only has room for ~D rows."
j (nth j pvar-subgrid-extent) dest-array array-offset (nth j array-subgrid-extent)
))))
(values pvar-subgrid-extent
(concatenate 'vector array-offset)
(concatenate 'vector grid-start)
(concatenate 'vector grid-end)
)))
(defun parse-array-to-pvar-grid-arguments (source-pvar dest-array array-offset grid-start grid-end)
(assert (or (null source-pvar) (pvarp source-pvar)) () "The destination pvar argument is neither unspecified nor a pvar")
(check-grid-function-arguments dest-array array-offset grid-start grid-end)
(let* ((array-dimensions (array-dimensions dest-array))
(pvar-subgrid-extent (map 'list #'- grid-end grid-start))
(array-subgrid-extent (map 'list #'- array-dimensions array-offset))
)
(dotimes (j *number-of-dimensions*)
(assert (>= (nth j array-subgrid-extent) (nth j pvar-subgrid-extent)) ()
"Along dimension ~D, you are trying to store into ~D rows (given a grid start of ~S and a grid end of ~S),
but an array offset of ~S only provides for ~D rows of data in the array along that dimension."
j (nth j pvar-subgrid-extent) grid-start grid-end array-offset (nth j array-subgrid-extent)
))
(values pvar-subgrid-extent
(concatenate 'vector array-offset)
(concatenate 'vector grid-start)
(concatenate 'vector grid-end)
)
))
(*defun pvar-to-array-grid
(source-pvar &optional dest-array
&key
(array-offset nil)
(grid-start nil)
(grid-end nil)
#+symbolics rasterp
&aux array-dimensions
)
(simple-pvar-argument!! source-pvar)
#+symbolics
(when rasterp
(return-from pvar-to-array-grid
(pvar-to-raster-grid source-pvar dest-array :raster-offset array-offset :grid-start grid-start :grid-end grid-end)
))
(new-pvar-check-no-vp-check source-pvar 'pvar-to-array-grid)
(assert (not (void-pvar-p source-pvar)) ()
"The pvar ~S has never been initialized. You cannot extract data out of such a pvar!" source-pvar
)
(*with-vp-set (pvar-vp-set source-pvar)
(when (null array-offset) (setq array-offset (make-list *number-of-dimensions* :initial-element 0)))
(when (null grid-start) (setq grid-start (make-list *number-of-dimensions* :initial-element 0)))
(when (null grid-end) (setq grid-end *current-cm-configuration*))
(multiple-value-bind (pvar-subgrid-extent)
(parse-pvar-to-array-grid-arguments source-pvar dest-array array-offset grid-start grid-end)
;; If the extent in any dimension is 0, then 0 elements
;; are in reality to be read, so there is nothing to do!
(if (some #'zerop pvar-subgrid-extent)
dest-array
(progn
(when (null dest-array)
(setq array-dimensions nil)
(dotimes (j *number-of-dimensions*)
(push (+ (nth j pvar-subgrid-extent) (nth j array-offset)) array-dimensions)
)
(setq array-dimensions (nreverse array-dimensions))
(setq dest-array (make-array array-dimensions))
)
;; We will iterate over grid addresses. We need to be able
;; to translate from a grid address into an array offset.
;; Figure out what we need to subtract from a grid address
;; to get the right array offset.
(let ((address-translation-from-grid-to-array
(map 'vector #'- grid-start array-offset))
(array-address (make-sequence 'list *number-of-dimensions*))
)
;; for each grid address within the region defined,
;; convert that grid address into the appropriate
;; array offset. Get the value stored in the array
;; at that offset and stuff it into the CM.
(with-hypergrid-coordinates-iterated
(grid-start grid-end)
(grid-address-as-vector cube-address)
(dotimes (j *number-of-dimensions*)
(setf (nth j array-address)
(- (svref grid-address-as-vector j)
(svref address-translation-from-grid-to-array j))))
(let ((value (pref source-pvar cube-address)))
(setf (apply #'aref dest-array array-address) value)
))
dest-array
))))))
(*defun array-to-pvar-grid
(source-array &optional (dest-pvar nil)
&key
(array-offset nil)
(grid-start nil)
(grid-end nil)
#+symbolics rasterp
)
#+symbolics
(when rasterp
(return-from array-to-pvar-grid
(raster-to-pvar-grid source-array dest-pvar :raster-offset array-offset :grid-start grid-start :grid-end grid-end)
))
(flet
((array-to-pvar-grid-internal ()
(when (null array-offset) (setq array-offset (make-list *number-of-dimensions* :initial-element 0)))
(when (null grid-start) (setq grid-start (make-list *number-of-dimensions* :initial-element 0)))
(when (null grid-end) (setq grid-end *current-cm-configuration*))
(multiple-value-bind (pvar-subgrid-vector)
(parse-array-to-pvar-grid-arguments dest-pvar source-array array-offset grid-start grid-end)
(declare (ignore pvar-subgrid-vector))
;; Select exactly those processors which are being written to.
(*let (return-pvar received-value?)
(*all (*set received-value? nil!!))
;; We will iterate over grid addresses. We need to be able
;; to translate from a grid address into an array offset.
;; Figure out what we need to subtract from a grid address
;; to get the right array offset.
(let ((address-translation-from-grid-to-array
(map 'vector #'- grid-start array-offset))
(array-address (make-sequence 'list *number-of-dimensions*))
)
;; for each grid address within the region defined,
;; convert that grid address into the appropriate
;; array offset. Get the value stored in the array
;; at that offset and stuff it into the CM.
(with-hypergrid-coordinates-iterated
(grid-start grid-end)
(grid-address-as-vector cube-address)
(dotimes (j *number-of-dimensions*)
(setf (nth j array-address)
(- (svref grid-address-as-vector j)
(svref address-translation-from-grid-to-array j))))
(let ((value (apply #'aref source-array array-address)))
(*setf (pref return-pvar cube-address) value)
(*setf (pref received-value? cube-address) t)
))
(when dest-pvar
(*when received-value?
(*set dest-pvar return-pvar)
))
return-pvar
)))))
(if dest-pvar
(progn
(new-pvar-check-no-vp-check dest-pvar 'array-to-pvar-grid)
(*with-vp-set (pvar-vp-set dest-pvar) (array-to-pvar-grid-internal) dest-pvar)
)
(array-to-pvar-grid-internal)
)
))
;;; Pvar <-> Raster Transfers (added by HLV)
;;; ARRAY-TO-PVAR-GRID and PVAR-TO-ARRAY-GRID with :RASTERP T should dispatch to these functions,
;;; without reversing any arguments.
(defun-wco RASTER-TO-PVAR-GRID (raster &optional dest-pvar &key raster-offset grid-start grid-end)
(let ((result-vp-set *current-vp-set*))
(*let (result!!)
(let-vp-set (transposed-vp-set (create-vp-set (reverse *current-cm-configuration*)))
(*with-vp-set transposed-vp-set
(*let (sideways-result!!)
(array-to-pvar-grid raster sideways-result!!
:array-offset (reverse raster-offset)
:grid-start (reverse grid-start)
:grid-end (reverse grid-end))
(*pset :default sideways-result!! result!!
(grid!! (self-address-grid!! (!! 1)) (self-address-grid!! (!! 0)))
:vp-set result-vp-set))))
(if dest-pvar
(progn (*set dest-pvar result!!)
dest-pvar)
result!!))))
(defun-wco PVAR-TO-RASTER-GRID (pvar!! &optional dest-raster &key raster-offset grid-start grid-end)
(let ((pvar-vp-set *current-vp-set*))
(let-vp-set (transposed-vp-set (create-vp-set (reverse *current-cm-configuration*)))
(*with-vp-set transposed-vp-set
(*let (sideways-pvar!!)
(*with-vp-set pvar-vp-set
(*pset :default pvar!! sideways-pvar!!
(grid!! (self-address-grid!! (!! 1)) (self-address-grid!! (!! 0)))
:vp-set transposed-vp-set)
(pvar-to-array-grid sideways-pvar!! dest-raster
:array-offset (reverse raster-offset)
:grid-start (reverse grid-start)
:grid-end (reverse grid-end))))))))