forked from golbin/KoGPT2-FineTuning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
199 lines (168 loc) ยท 6.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
from torch.utils.data import DataLoader # ๋ฐ์ดํฐ๋ก๋
from gluonnlp.data import SentencepieceTokenizer
from kogpt2.utils import get_tokenizer
from kogpt2.utils import download, tokenizer
from kogpt2.model.torch_gpt2 import GPT2Config, GPT2LMHeadModel
from kogpt2.data import Read_Dataset
import gluonnlp
from kogpt2.model.sample import sample_sequence
from tqdm import tqdm
import subprocess
import os
from tensorboardX import SummaryWriter
import re
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=200,
help="epoch ๋ฅผ ํตํด์ ํ์ต ๋ฒ์๋ฅผ ์กฐ์ ํฉ๋๋ค.")
parser.add_argument('--save_path', type=str, default='./checkpoint/',
help="ํ์ต ๊ฒฐ๊ณผ๋ฅผ ์ ์ฅํ๋ ๊ฒฝ๋ก์
๋๋ค.")
parser.add_argument('--load_path', type=str, default='./checkpoint/Alls/KoGPT2_checkpoint_296000.tar', #
help="ํ์ต๋ ๊ฒฐ๊ณผ๋ฅผ ๋ถ๋ฌ์ค๋ ๊ฒฝ๋ก์
๋๋ค.")
parser.add_argument('--samples', type=str, default="samples/",
help="์์ฑ ๊ฒฐ๊ณผ๋ฅผ ์ ์ฅํ ๊ฒฝ๋ก์
๋๋ค.")
parser.add_argument('--data_file_path', type=str, default='dataset/lyrics_dataset.txt',
help="ํ์ตํ ๋ฐ์ดํฐ๋ฅผ ๋ถ๋ฌ์ค๋ ๊ฒฝ๋ก์
๋๋ค.")
parser.add_argument('--batch_size', type=int, default=8,
help="batch_size ๋ฅผ ์ง์ ํฉ๋๋ค.")
args = parser.parse_args()
pytorch_kogpt2 = {
'url':
'checkpoint/pytorch_kogpt2_676e9bcfa7.params',
'fname': 'pytorch_kogpt2_676e9bcfa7.params',
'chksum': '676e9bcfa7'
}
kogpt2_config = {
"initializer_range": 0.02,
"layer_norm_epsilon": 1e-05,
"n_ctx": 1024,
"n_embd": 768,
"n_head": 12,
"n_layer": 12,
"n_positions": 1024,
"vocab_size": 50000
}
def auto_enter(text):
text = (text.replace(" ", "\n"))
text = text.split("\n")
text = [t.lstrip() for t in text if t != '']
return "\n\n".join(text)
def get_gpu_memory_map():
"""Get the current gpu usage.
Returns
-------
usage: dict
Keys are device ids as integers.
Values are memory usage as integers in MB.
"""
result = subprocess.check_output(
[
'nvidia-smi', '--query-gpu=memory.used',
'--format=csv,nounits,noheader'
], encoding='utf-8')
# Convert lines into a dictionary
gpu_memory = [int(x) for x in result.strip().split('\n')]
gpu_memory_map = dict(zip(range(len(gpu_memory)), gpu_memory))
return gpu_memory_map
def main(epoch, save_path, load_path, samples, data_file_path, batch_size):
ctx = 'cuda'
cachedir = '~/kogpt2/'
summary = SummaryWriter()
# download model
model_info = pytorch_kogpt2
model_path = download(model_info['url'],
model_info['fname'],
model_info['chksum'],
cachedir=cachedir)
# download vocab
vocab_info = tokenizer
vocab_path = download(vocab_info['url'],
vocab_info['fname'],
vocab_info['chksum'],
cachedir=cachedir)
# KoGPT-2 ์ธ์ด ๋ชจ๋ธ ํ์ต์ ์ํ GPT2LMHeadModel ์ ์ธ
kogpt2model = GPT2LMHeadModel(config=GPT2Config.from_dict(kogpt2_config))
# model_path ๋ก๋ถํฐ ๋ค์ด๋ก๋ ๋ฐ์ ๋ด์ฉ์ load_state_dict ์ผ๋ก ์
๋ก๋
kogpt2model.load_state_dict(torch.load(model_path))
device = torch.device(ctx)
kogpt2model.to(device)
# ๋ถ๋ฌ์ค๊ธฐ ๋ถ๋ถ
try:
checkpoint = torch.load(load_path, map_location=device)
# KoGPT-2 ์ธ์ด ๋ชจ๋ธ ํ์ต์ ์ํ GPT2LMHeadModel ์ ์ธ
kogpt2model = GPT2LMHeadModel(config=GPT2Config.from_dict(kogpt2_config))
kogpt2model.load_state_dict(checkpoint['model_state_dict'])
kogpt2model.eval()
except:
count = 0
else:
count = int(re.findall("\d+", load_path)[1])
print(count)
# ์ถ๊ฐ๋ก ํ์ตํ๊ธฐ ์ํด .train() ์ฌ์ฉ
kogpt2model.train()
vocab_b_obj = gluonnlp.vocab.BERTVocab.from_sentencepiece(vocab_path,
mask_token=None,
sep_token=None,
cls_token=None,
unknown_token='<unk>',
padding_token='<pad>',
bos_token='<s>',
eos_token='</s>')
tok_path = get_tokenizer()
model, vocab = kogpt2model, vocab_b_obj
tok = SentencepieceTokenizer(tok_path)
dataset = Read_Dataset(data_file_path, vocab, tok)
print("Read_Dataset ok")
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, pin_memory=True)
learning_rate = 3e-5
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
print('KoGPT-2 Transfer Learning Start')
avg_loss = (0.0, 0.0)
for epoch in range(epoch):
for data in data_loader:
optimizer.zero_grad()
data = torch.stack(data) # list of Tensor๋ก ๊ตฌ์ฑ๋์ด ์๊ธฐ ๋๋ฌธ์ list๋ฅผ stack์ ํตํด ๋ณํํด์ค๋ค.
data = data.transpose(1,0)
data = data.to(ctx)
model = model.to(ctx)
outputs = model(data, labels=data)
loss, logits = outputs[:2]
loss = loss.to(ctx)
loss.backward()
avg_loss = (avg_loss[0] * 0.99 + loss, avg_loss[1] * 0.99 + 1.0)
optimizer.step()
if count % 10 == 0:
print('epoch no.{0} train no.{1} loss = {2:.5f} avg_loss = {3:.5f}' . format(epoch, count, loss, avg_loss[0] / avg_loss[1]))
summary.add_scalar('loss/avg_loss', avg_loss[0] / avg_loss[1], count)
summary.add_scalar('loss/loss', loss, count)
# generator ์งํ
if (count > 0 and count % 1000 == 0) or (len(data) < batch_size):
sent = sample_sequence(model.to("cpu"), tok, vocab, sent="์ฌ๋", text_size=100, temperature=0.7, top_p=0.8, top_k=40)
sent = sent.replace("<unused0>", "\n") # ๋นํจ์จ์ ์ด์ง๋ง ์ํฐ๋ฅผ ์ํด์ ๋ฑ์ฅ
sent = auto_enter(sent)
print(sent)
summary.add_text('Text', sent, count)
if count > 500000:
now = [int(n) for n in os.listdir(samples)]
now = max(now)
f = open(samples + str(now + 1), 'w', encoding="utf-8")
f.write(sent)
f.close()
#########################################
count += 1
if (count > 0 and count % 10000 == 0) or (len(data) < batch_size):
# ๋ชจ๋ธ ์ ์ฅ
try:
torch.save({
'epoch': epoch,
'train_no': count,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss
}, save_path + 'KoGPT2_checkpoint_' + str(count) + '.tar')
except:
pass
if __name__ == "__main__":
main(args.epoch, args.save_path, args.load_path, args.samples, args.data_file_path, args.batch_size)