Skip to content

Latest commit

 

History

History

fermi-3fhl

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Gammapy validation: Fermi-LAT 3FHL

Task

Reproduce some Fermi-LAT 3FHL results to check Gammapy against the Fermi ST

References

Method

We fit a selection of ROIs defined in the 3FHL catalog (starting by the ones containing the most significant source). We compare the resulting source parameters and flux points to the catalogued values. The spectrum and flux points comparison is limited to sources with an average significance larger than 8 sigma (Signif_Avg > 8). In addition we show the observed/predicted counts and residuals maps.

  • Events selection : 3FHL dataset (7 years, all event types)
  • Energies : 10 GeV - 2 TeV
  • Spatial bins : 1/8 deg
  • Energy bins : 10 per decade

Usage

Run python make.py

options :
	selection : {debug, short, long}
		debug : run only Vela region
		short : run 8 regions (including Vela and Crab), default
		long :  run 100 regions
	processess : int
		number of processes to run regions in parallel, default is 4
	fit : bool
		run fit if True otherwise try to read results from disk, default is True

Examples:

python make.py --selection debug  --processes 1
python make.py --selection long  --processes 6

Results

First trial outcomes

  • Spectral parameters are compatibles at ~97% and relative relative errors on parameters remain lower than 10% for most of the sources tested.
  • Flux points are compatibles despite a small systematic effect for ~8% lower flux points values. This is possibly related to current spectral model evaluation in bin centers, have to check again once improved.
  • We pre-computed background models extrapolation, have to check SkyDiffuseCube and TemplateSpectralModel evaluation when extrapolating.
  • Projections effects: map discontinuity at 180°, high latitude distortion.
  • Minuit related issues: the default Minuit tolerance of tol=0.1 is likely too small (internally Minuit use 1e-4*tol), so we used the following options : optimize_opts = {"backend": "minuit", "tol": 10.0, "strategy": 2} Increasing tol allows to reach convergence in a reasonable time, strategy=2 is slower than default (1) but more precise.

Global Diagnostics

(100 ROIs fitted)

All following values are given in percent

Optimization terminated successfully. 100.0
Optimization failed. 0.0
Optimization failed. Estimated distance to minimum too large. 0.0

flux_points
Rel. err. <10%: 61.971830985915496
Rel. err. <30%: 91.72535211267606
Rel. err. mean: -5.8491302077856595

PL_index
dx/x <10% : 72.25806451612904
dx/x <30% : 99.35483870967742
Rel. err. <10%: 99.35483870967742
Rel. err. <30%: 100.0
Rel. err. mean: -0.1633147376900733
compatibility: 100.0

PL_amplitude
dx/x <10% : 49.67741935483871
dx/x <30% : 99.35483870967742
Rel. err. <10%: 95.48387096774194
Rel. err. <30%: 100.0
Rel. err. mean: -0.22198785615526734
compatibility: 98.06451612903226

LP_alpha
dx/x <10% : 76.47058823529412
dx/x <30% : 100.0
Rel. err. <10%: 100.0
Rel. err. <30%: 100.0
Rel. err. mean: 0.15134907307517098
compatibility: 100.0

LP_beta
dx/x <10% : 47.05882352941177
dx/x <30% : 64.70588235294117
Rel. err. <10%: 76.47058823529412
Rel. err. <30%: 100.0
Rel. err. mean: -4.091718544272052
compatibility: 100.0

LP_amplitude
dx/x <10% : 82.3529411764706
dx/x <30% : 100.0
Rel. err. <10%: 100.0
Rel. err. <30%: 100.0
Rel. err. mean: -1.3330366391977653
compatibility: 100.0

Regions plots

Crab region

Crab

TXS 0518+211

Vela region

Vela Jr

Vela PSR

Vela X