-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain.py
205 lines (175 loc) · 9.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# external libraries
import numpy as np
import pickle
import os
import json
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
# internal utilities
import config
from model import BiDAF
from data_loader import SquadDataset
from utils import save_checkpoint, compute_batch_metrics
# preprocessing values used for training
prepro_params = {
"max_words": config.max_words,
"word_embedding_size": config.word_embedding_size,
"char_embedding_size": config.char_embedding_size,
"max_len_context": config.max_len_context,
"max_len_question": config.max_len_question,
"max_len_word": config.max_len_word
}
# hyper-parameters setup
hyper_params = {
"num_epochs": config.num_epochs,
"batch_size": config.batch_size,
"learning_rate": config.learning_rate,
"hidden_size": config.hidden_size,
"char_channel_width": config.char_channel_width,
"char_channel_size": config.char_channel_size,
"drop_prob": config.drop_prob,
"cuda": config.cuda,
"pretrained": config.pretrained
}
experiment_params = {"preprocessing": prepro_params, "model": hyper_params}
# train on GPU if CUDA variable is set to True (a GPU with CUDA is needed to do so)
device = torch.device("cuda" if hyper_params["cuda"] else "cpu")
torch.manual_seed(42)
# define a path to save experiment logs
experiment_path = "output/{}".format(config.exp)
if not os.path.exists(experiment_path):
os.mkdir(experiment_path)
# save the preprocesisng and model parameters used for this training experiemnt
with open(os.path.join(experiment_path, "config_{}.json".format(config.exp)), "w") as f:
json.dump(experiment_params, f)
# start TensorboardX writer
writer = SummaryWriter(experiment_path)
# open features file and store them in individual variables (train + dev)
train_features = np.load(os.path.join(config.train_dir, "train_features.npz"))
t_w_context, t_c_context, t_w_question, t_c_question, t_labels = train_features["context_idxs"],\
train_features["context_char_idxs"],\
train_features["question_idxs"],\
train_features["question_char_idxs"],\
train_features["label"]
dev_features = np.load(os.path.join(config.dev_dir, "dev_features.npz"))
d_w_context, d_c_context, d_w_question, d_c_question, d_labels = dev_features["context_idxs"],\
dev_features["context_char_idxs"],\
dev_features["question_idxs"],\
dev_features["question_char_idxs"],\
dev_features["label"]
# load the embedding matrix created for our word vocabulary
with open(os.path.join(config.train_dir, "word_embeddings.pkl"), "rb") as e:
word_embedding_matrix = pickle.load(e)
with open(os.path.join(config.train_dir, "char_embeddings.pkl"), "rb") as e:
char_embedding_matrix = pickle.load(e)
# load mapping between words and idxs
with open(os.path.join(config.train_dir, "word2idx.pkl"), "rb") as f:
word2idx = pickle.load(f)
idx2word = dict([(y, x) for x, y in word2idx.items()])
# transform them into Tensors
word_embedding_matrix = torch.from_numpy(np.array(word_embedding_matrix)).type(torch.float32)
char_embedding_matrix = torch.from_numpy(np.array(char_embedding_matrix)).type(torch.float32)
# load datasets
train_dataset = SquadDataset(t_w_context, t_c_context, t_w_question, t_c_question, t_labels)
valid_dataset = SquadDataset(d_w_context, d_c_context, d_w_question, d_c_question, d_labels)
# load data generators
train_dataloader = DataLoader(train_dataset,
shuffle=True,
batch_size=hyper_params["batch_size"],
num_workers=4)
valid_dataloader = DataLoader(valid_dataset,
shuffle=True,
batch_size=hyper_params["batch_size"],
num_workers=4)
print("Length of training data loader is:", len(train_dataloader))
print("Length of valid data loader is:", len(valid_dataloader))
# load the model
model = BiDAF(word_vectors=word_embedding_matrix,
char_vectors=char_embedding_matrix,
hidden_size=hyper_params["hidden_size"],
drop_prob=hyper_params["drop_prob"])
if hyper_params["pretrained"]:
model.load_state_dict(torch.load(os.path.join(experiment_path, "model.pkl"))["state_dict"])
model.to(device)
# define loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adadelta(model.parameters(), hyper_params["learning_rate"], weight_decay=1e-4)
# best loss so far
if hyper_params["pretrained"]:
best_valid_loss = torch.load(os.path.join(experiment_path, "model.pkl"))["best_valid_loss"]
epoch_checkpoint = torch.load(os.path.join(experiment_path, "model_last_checkpoint.pkl"))["epoch"]
print("Best validation loss obtained after {} epochs is: {}".format(epoch_checkpoint, best_valid_loss))
else:
best_valid_loss = 100
epoch_checkpoint = 0
# train the Model
print("Starting training...")
for epoch in range(hyper_params["num_epochs"]):
print("##### epoch {:2d}".format(epoch + 1))
model.train()
train_losses = 0
for i, batch in enumerate(train_dataloader):
w_context, c_context, w_question, c_question, label1, label2 = batch[0].long().to(device),\
batch[1].long().to(device), \
batch[2].long().to(device), \
batch[3].long().to(device), \
batch[4][:, 0].long().to(device),\
batch[4][:, 1].long().to(device)
optimizer.zero_grad()
pred1, pred2 = model(w_context, c_context, w_question, c_question)
loss = criterion(pred1, label1) + criterion(pred2, label2)
train_losses += loss.item()
loss.backward()
optimizer.step()
writer.add_scalars("train", {"loss": np.round(train_losses / len(train_dataloader), 2),
"epoch": epoch + 1})
print("Train loss of the model at epoch {} is: {}".format(epoch + 1, np.round(train_losses /
len(train_dataloader), 2)))
model.eval()
valid_losses = 0
valid_em = 0
valid_f1 = 0
n_samples = 0
with torch.no_grad():
for i, batch in enumerate(valid_dataloader):
w_context, c_context, w_question, c_question, labels = batch[0].long().to(device), \
batch[1].long().to(device), \
batch[2].long().to(device), \
batch[3].long().to(device), \
batch[4]
first_labels = torch.tensor([[int(a) for a in l.split("|")[0].split(" ")]
for l in labels], dtype=torch.int64).to(device)
pred1, pred2 = model(w_context, c_context, w_question, c_question)
loss = criterion(pred1, first_labels[:, 0]) + criterion(pred2, first_labels[:, 1])
valid_losses += loss.item()
em, f1 = compute_batch_metrics(w_context, idx2word, pred1, pred2, labels)
valid_em += em
valid_f1 += f1
n_samples += w_context.size(0)
writer.add_scalars("valid", {"loss": np.round(valid_losses / len(valid_dataloader), 2),
"EM": np.round(valid_em / n_samples, 2),
"F1": np.round(valid_f1 / n_samples, 2),
"epoch": epoch + 1})
print("Valid loss of the model at epoch {} is: {}".format(epoch + 1, np.round(valid_losses /
len(valid_dataloader), 2)))
print("Valid EM of the model at epoch {} is: {}".format(epoch + 1, np.round(valid_em / n_samples, 2)))
print("Valid F1 of the model at epoch {} is: {}".format(epoch + 1, np.round(valid_f1 / n_samples, 2)))
# save last model weights
save_checkpoint({
"epoch": epoch + 1 + epoch_checkpoint,
"state_dict": model.state_dict(),
"best_valid_loss": np.round(valid_losses / len(valid_dataloader), 2)
}, True, os.path.join(experiment_path, "model_last_checkpoint.pkl"))
# save model with best validation error
is_best = bool(np.round(valid_losses / len(valid_dataloader), 2) < best_valid_loss)
best_valid_loss = min(np.round(valid_losses / len(valid_dataloader), 2), best_valid_loss)
save_checkpoint({
"epoch": epoch + 1 + epoch_checkpoint,
"state_dict": model.state_dict(),
"best_valid_loss": best_valid_loss
}, is_best, os.path.join(experiment_path, "model.pkl"))
# export scalar data to JSON for external processing
writer.export_scalars_to_json(os.path.join(experiment_path, "all_scalars.json"))
writer.close()