-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
77 lines (65 loc) · 2.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import logging
import warnings
import hydra
import pandas as pd
from tqdm import tqdm
import wandb
from consistency.config import EvalConfig
from consistency.dataset import SimilarityPairDataset
from consistency.generator import similarity_generator
from consistency.models import model_factory
from consistency.validator import similarity_validator
warnings.filterwarnings("ignore")
logger = logging.getLogger(__name__)
@hydra.main(config_path="configs", config_name="eval", version_base=None)
def main(cfg):
logger.info(cfg)
cfg = EvalConfig(**dict(cfg))
logger.info("Loading dataset")
dataset = SimilarityPairDataset(data_dir="data")
logger.info("Loading Model")
model = model_factory(cfg.consistency.model)
# Add requirement for wandb core
wandb.require("core")
wandb.init(
name=f"{cfg.consistency.model}-{cfg.consistency.special_run_name}",
project=cfg.wandb.project,
entity=cfg.wandb.entity,
mode=cfg.wandb.mode,
config=cfg.model_dump(),
)
statements = []
for example in tqdm(dataset):
for modality in cfg.consistency.generate_modalities:
generated_text, generated_similarity_statements = similarity_generator(
model, example, mode=modality
)
for generated_idx, generated_similarity_statement in enumerate(
generated_similarity_statements
):
statement = {
"dataset_idx": example["id"],
"generated_idx": generated_idx, # can track whether position of generated statement has effect on evaluation
"statement": generated_similarity_statement,
"generated_with": modality,
"generated_statement_text": generated_text,
}
for prompt_type in cfg.consistency.validate_prompt_type:
for validate_modality in cfg.consistency.validate_modalities:
validate_response = similarity_validator(
model,
example,
statement=generated_similarity_statement,
mode=validate_modality,
prompt_type=prompt_type,
)
statement[f"validate_{validate_modality}_{prompt_type}"] = (
validate_response
)
statements.append(statement)
statements_df = pd.DataFrame(statements)
# save to wandb
wandb.log({"evaluated_statements": wandb.Table(dataframe=statements_df)})
wandb.finish()
if __name__ == "__main__":
main()