-
Notifications
You must be signed in to change notification settings - Fork 0
/
cartoongan.py
455 lines (386 loc) · 20.6 KB
/
cartoongan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import os
import cv2
import math
import time
import torch
import numpy as np
import gradio as gr
import torch.nn as nn
from tqdm import tqdm
from typing import Union
from torch import sigmoid
import torch.optim as optim
from torch.nn import BCELoss
from torchvision import models
import matplotlib.pyplot as plt
import torch.nn.functional as F
from PIL import Image, ImageFilter
from skimage.filters import gaussian
from skimage import io, img_as_ubyte
from torchvision import transforms as T
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader, random_split
from download_checkpoints import CheckpointsDownloader
class ResidualBlock(nn.Module):
"""
Residual Network Block with 2 Convolution and BatchNorm layers
"""
def __init__(self):
super().__init__()
self.conv_1 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.conv_2 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.norm_1 = nn.BatchNorm2d(256)
self.norm_2 = nn.BatchNorm2d(256)
def forward(self, x):
output = self.norm_2(self.conv_2(F.relu(self.norm_1(self.conv_1(x)))))
return output + x
class Generator(nn.Module):
"""
Generator Network
"""
def __init__(self):
super().__init__()
self.conv_1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=7, stride=1, padding=3)
self.norm_1 = nn.BatchNorm2d(64)
self.conv_2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1)
self.conv_3 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1)
self.norm_2 = nn.BatchNorm2d(128)
self.conv_4 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1)
self.conv_5 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.norm_3 = nn.BatchNorm2d(256)
self.residual_blocks = [ResidualBlock() for _ in range(8)]
self.res = nn.Sequential(*self.residual_blocks)
self.conv_6 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=1, output_padding=1)
self.conv_7 = nn.ConvTranspose2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1)
self.norm_4 = nn.BatchNorm2d(128)
self.conv_8 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1, output_padding=1)
self.conv_9 = nn.ConvTranspose2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1)
self.norm_5 = nn.BatchNorm2d(64)
self.conv_10 = nn.Conv2d(in_channels=64, out_channels=3, kernel_size=7, stride=1, padding=3)
self.dropout = nn.Dropout(0.2)
def forward(self, x):
x = F.relu(self.norm_1(self.conv_1(x)))
x = self.dropout(x)
x = F.relu(self.norm_2(self.conv_3(self.conv_2(x))))
x = F.relu(self.norm_3(self.conv_5(self.conv_4(x))))
x = self.res(x)
x = F.relu(self.norm_4(self.conv_7(self.conv_6(x))))
x = F.relu(self.norm_5(self.conv_9(self.conv_8(x))))
x = self.dropout(x)
x = self.conv_10(x)
x = sigmoid(x)
return x
class Discriminator(nn.Module):
"""
Discriminator Network
"""
def __init__(self):
super().__init__()
self.conv_1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv_2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1)
self.conv_3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
self.norm_1 = nn.BatchNorm2d(128)
self.conv_4 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=2, padding=1)
self.conv_5 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1)
self.norm_2 = nn.BatchNorm2d(256)
self.conv_6 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.norm_3 = nn.BatchNorm2d(256)
self.conv_7 = nn.Conv2d(in_channels=256, out_channels=1, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = F.leaky_relu(self.conv_1(x))
x = F.leaky_relu(self.norm_1(self.conv_3(F.leaky_relu(self.conv_2(x)))), negative_slope=0.2)
x = F.leaky_relu(self.norm_2(self.conv_5(F.leaky_relu(self.conv_4(x)))), negative_slope=0.2)
x = F.leaky_relu(self.norm_3(self.conv_6(x)), negative_slope=0.2)
x = self.conv_7(x)
x = sigmoid(x)
return x
class CartoonGAN:
def __init__(self):
self.image_size = 256
self.batch_size = 32
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.data_dir = os.path.join(os.getcwd(), 'datasets', 'danbooru', 'data', 'train')
self._create_directories()
self._prepare_datasets()
self._prepare_models()
self._prepare_optimizers()
self._prepare_losses()
def _create_directories(self) -> None:
"""
Creates directory to store intermediate training results (pair of images at the end of each epoch)
"""
if not os.path.exists('intermediate_results'):
os.makedirs('intermediate_results')
def _prepare_datasets(self) -> None:
"""
Apply transformation and load the training images(original, cartoon, real) into a Dataset Loader object
and split into train and validation splits
"""
transformer = T.Compose([
T.CenterCrop(self.image_size),
T.ToTensor()
])
cartoon_dataset = ImageFolder(os.path.join(self.data_dir, 'cartoons'), transformer)
len_training_set = math.floor(len(cartoon_dataset) * 0.9)
len_valid_set = len(cartoon_dataset) - len_training_set
training_set, _ = random_split(cartoon_dataset, (len_training_set, len_valid_set))
self.cartoon_image_dataloader_train = DataLoader(training_set, self.batch_size, shuffle=True, num_workers=0)
smoothed_cartoon_dataset = ImageFolder(os.path.join(self.data_dir, 'cartoons_smoothed'), transformer)
len_training_set = math.floor(len(smoothed_cartoon_dataset) * 0.9)
len_valid_set = len(smoothed_cartoon_dataset) - len_training_set
training_set, _ = random_split(smoothed_cartoon_dataset, (len_training_set, len_valid_set))
self.smoothed_cartoon_image_dataloader_train = DataLoader(training_set, self.batch_size, shuffle=True, num_workers=0)
real_dataset = ImageFolder(os.path.join(self.data_dir, 'real'), transformer)
len_training_set = math.floor(len(real_dataset) * 0.9)
len_valid_set = len(real_dataset) - len_training_set
training_set, validation_set = random_split(real_dataset, (len_training_set, len_valid_set))
self.photo_dataloader_train = DataLoader(training_set, self.batch_size, shuffle=True, num_workers=0)
self.photo_dataloader_valid = DataLoader(validation_set, self.batch_size, shuffle=True, num_workers=0)
def _prepare_models(self):
self.G = Generator().to(self.device)
self.D = Discriminator().to(self.device)
vgg16 = models.vgg16(weights='DEFAULT')
self.feature_extractor = vgg16.features[:24].to(self.device)
for param in self.feature_extractor.parameters():
param.require_grad = False
def _prepare_optimizers(self):
lr = 0.0002
beta1 = 0.5
beta2 = 0.999
self.d_optimizer = optim.Adam(self.D.parameters(), lr, [beta1, beta2])
self.g_optimizer = optim.Adam(self.G.parameters(), lr, [beta1, beta2])
def _prepare_losses(self):
self.discriminator_loss = self.DiscriminatorLoss(self.device)
self.generator_loss = self.GeneratorLoss(self.feature_extractor, self.device)
class DiscriminatorLoss(nn.Module):
def __init__(self, device):
super().__init__()
self.bce_loss = BCELoss()
self.device = device
def forward(self, discriminator_output_of_cartoon_input, discriminator_output_of_cartoon_smoothed_input, discriminator_output_of_generated_image_input, epoch, write_to_tensorboard=False):
actual_batch_size = discriminator_output_of_cartoon_input.size()[0]
zeros = torch.zeros([actual_batch_size, 1, 64, 64]).to(self.device)
ones = torch.ones([actual_batch_size, 1, 64, 64]).to(self.device)
d_loss_cartoon = self.bce_loss(discriminator_output_of_cartoon_input, ones)
d_loss_cartoon_smoothed = self.bce_loss(discriminator_output_of_cartoon_smoothed_input, zeros)
d_loss_generated_input = self.bce_loss(discriminator_output_of_generated_image_input, zeros)
d_loss = d_loss_cartoon + d_loss_cartoon_smoothed + d_loss_generated_input
return d_loss
class GeneratorLoss(nn.Module):
def __init__(self, feature_extractor, device):
super().__init__()
self.w = 0.000005
self.bce_loss = BCELoss()
self.feature_extractor = feature_extractor
self.device = device
def forward(self, discriminator_output_of_generated_image_input, generator_input, generator_output, epoch, is_init_phase=False, write_to_tensorboard=False):
if is_init_phase:
g_content_loss = self._content_loss(generator_input, generator_output)
g_adversarial_loss = 0.0
g_loss = g_content_loss
else:
g_adversarial_loss = self._adversarial_loss_generator_part_only(discriminator_output_of_generated_image_input)
g_content_loss = self._content_loss(generator_input, generator_output)
g_loss = g_adversarial_loss + self.w * g_content_loss
return g_loss
def _adversarial_loss_generator_part_only(self, discriminator_output_of_generated_image_input):
actual_batch_size = discriminator_output_of_generated_image_input.size()[0]
ones = torch.ones([actual_batch_size, 1, 64, 64]).to(self.device)
return self.bce_loss(discriminator_output_of_generated_image_input, ones)
def _content_loss(self, generator_input, generator_output):
return (self.feature_extractor(generator_output) - self.feature_extractor(generator_input)).norm(p=1)
def train(self, num_epochs: int, checkpoint_dir: str) -> (list, list):
"""
Training loop for Cartoon GAN.
Args:
num_epochs (int): The number of epochs to train the model.
checkpoint_dir (str): The directory to save checkpoints.
Returns:
tuple: A tuple containing two lists:
- losses (list): Training losses for each epoch of generator and discriminator.
- validation_losses (list): Validation losses for each epoch of generator.
"""
best_valid_loss = math.inf
epochs_already_done = 0
losses = []
validation_losses = []
os.makedirs('checkpoints', exist_ok=True)
checkpoints = [f for f in os.listdir(checkpoint_dir) if os.path.isfile(os.path.join(checkpoint_dir, f))]
if checkpoints:
last_checkpoint = sorted(checkpoints)[-1]
checkpoint = torch.load(os.path.join(checkpoint_dir, last_checkpoint), map_location=self.device)
best_valid_loss = checkpoint['best_valid_loss']
epochs_already_done = checkpoint['last_epoch']
losses = checkpoint['losses']
validation_losses = checkpoint['validation_losses']
self.D.load_state_dict(checkpoint['d_state_dict'])
self.G.load_state_dict(checkpoint['g_state_dict'])
self.d_optimizer.load_state_dict(checkpoint['d_optimizer_state_dict'])
self.g_optimizer.load_state_dict(checkpoint['g_optimizer_state_dict'])
print(f'Loaded checkpoint {last_checkpoint} with g_valid_loss {checkpoint["g_valid_loss"]}, best_valid_loss {best_valid_loss}, {epochs_already_done} epochs, and total number of losses {len(losses)}')
init_epochs = 10
print_every = 100
start_time = time.time()
for epoch in range(num_epochs - epochs_already_done):
epoch += epochs_already_done
for index, ((photo_images, _), (smoothed_cartoon_images, _), (cartoon_images, _)) in enumerate(zip(self.photo_dataloader_train, self.smoothed_cartoon_image_dataloader_train, self.cartoon_image_dataloader_train)):
batch_size = photo_images.size(0)
photo_images = photo_images.to(self.device)
smoothed_cartoon_images = smoothed_cartoon_images.to(self.device)
cartoon_images = cartoon_images.to(self.device)
# training the discriminator
self.d_optimizer.zero_grad()
d_of_cartoon_input = self.D(cartoon_images)
d_of_cartoon_smoothed_input = self.D(smoothed_cartoon_images)
d_of_generated_image_input = self.D(self.G(photo_images))
write_only_one_loss_from_epoch_not_every_batch_loss = (index == 0)
d_loss = self.discriminator_loss(d_of_cartoon_input, d_of_cartoon_smoothed_input, d_of_generated_image_input, epoch, write_to_tensorboard=write_only_one_loss_from_epoch_not_every_batch_loss)
d_loss.backward()
self.d_optimizer.step()
# training the generator
self.g_optimizer.zero_grad()
g_output = self.G(photo_images)
d_of_generated_image_input = self.D(g_output)
init_phase = epoch < init_epochs
g_loss = self.generator_loss(d_of_generated_image_input, photo_images, g_output, epoch, is_init_phase=init_phase, write_to_tensorboard=write_only_one_loss_from_epoch_not_every_batch_loss)
g_loss.backward()
self.g_optimizer.step()
if (index % print_every) == 0:
losses.append((d_loss.item(), g_loss.item()))
now = time.time()
current_run_time = now - start_time
start_time = now
print(f"Epoch {epoch + 1}/{num_epochs} | d_loss {d_loss.item():.4f} | g_loss {g_loss.item():.4f} | time {current_run_time:.0f}s | total number of losses {len(losses)}")
self._save_training_result(photo_images, g_output)
with torch.no_grad():
self.D.eval()
self.G.eval()
for batch_index, (photo_images, _) in enumerate(self.photo_dataloader_valid):
photo_images = photo_images.to(self.device)
g_output = self.G(photo_images)
d_of_generated_image_input = self.D(g_output)
g_valid_loss = self.generator_loss(d_of_generated_image_input, photo_images, g_output, epoch, is_init_phase=init_phase, write_to_tensorboard=write_only_one_loss_from_epoch_not_every_batch_loss)
if batch_index % print_every == 0:
validation_losses.append(g_valid_loss.item())
now = time.time()
current_run_time = now - start_time
start_time = now
print(f"Epoch {epoch + 1}/{num_epochs} | validation loss {g_valid_loss.item():.4f} | time {current_run_time:.0f}s | total number of losses {len(validation_losses)}")
self.D.train()
self.G.train()
if g_valid_loss.item() < best_valid_loss:
print(f"Generator loss improved from {best_valid_loss} to {g_valid_loss.item()}")
best_valid_loss = g_valid_loss.item()
checkpoint = {
'g_valid_loss': g_valid_loss.item(),
'best_valid_loss': best_valid_loss,
'losses': losses,
'validation_losses': validation_losses,
'last_epoch': epoch + 1,
'd_state_dict': self.D.state_dict(),
'g_state_dict': self.G.state_dict(),
'd_optimizer_state_dict': self.d_optimizer.state_dict(),
'g_optimizer_state_dict': self.g_optimizer.state_dict()
}
torch.save(checkpoint, os.path.join(checkpoint_dir, f'checkpoint_epoch_{epoch + 1:03d}.pth'))
if best_valid_loss == g_valid_loss.item():
print("Overwrite best checkpoint")
torch.save(checkpoint, os.path.join(checkpoint_dir, 'best_checkpoint.pth'))
return losses, validation_losses
def _save_training_result(self, input, output):
image_input = input[0].detach().cpu().numpy()
image_output = output[0].detach().cpu().numpy()
image_input = np.transpose(image_input, (1, 2, 0))
image_output = np.transpose(image_output, (1, 2, 0))
filename = str(int(time.time()))
path_input = os.path.join('intermediate_results', f'{filename}_input.jpg')
path_output = os.path.join('intermediate_results', f'{filename}.jpg')
plt.imsave(path_input, image_input)
plt.imsave(path_output, image_output)
def plot_loss_curves(losses: list, val_losses: list, save_path: str = "plots") -> None:
"""
Plots and saves the training and validation loss curves for the generator and discriminator.
Args:
losses (list): A list of tuples, where each tuple contains the discriminator loss and generator loss.
val_losses (list): A list of generator validation losses.
save_path (str): The path where the plot will be saved. Defaults to "./plots".
"""
os.makedirs(save_path, exist_ok=True)
d_losses = [x[0] for x in losses]
g_losses = [x[1] for x in losses]
plt.figure(figsize=(10, 5))
plt.plot(d_losses, label='Discriminator training loss')
plt.plot(g_losses, label='Generator training loss')
plt.plot(val_losses, label='Generator validation loss')
plt.yscale('log')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Training and Validation Loss Curves')
plt.legend(frameon=False)
plt.savefig(os.path.join(save_path, 'loss_curve.png'))
plt.close()
def load_checkpoint(checkpoint_path: str, device: torch.device) -> torch.nn.Module:
"""
Loads the checkpoint for the Generator model.
Args:
checkpoint_path (str): Path to the checkpoint file.
device (torch.device): The device to load the model on.
Returns:
torch.nn.Module: The loaded Generator model.
"""
if not os.path.exists('best_checkpoints'):
downloader = CheckpointsDownloader()
downloader.download()
checkpoint = torch.load(checkpoint_path, map_location=device)
model = Generator().to(device)
model.load_state_dict(checkpoint['g_state_dict'])
return model
def preprocess_image(image_path: str, device: torch.device) -> torch.Tensor:
"""
Preprocesses the input image for the model.
Args:
image_path (str): Path to the input image.
device (torch.device): The device to load the image on.
Returns:
torch.Tensor: The preprocessed image tensor.
"""
img = Image.open(image_path)
transform = T.Compose([
T.Resize([256, 256]),
T.ToTensor()
])
img = transform(img).unsqueeze(0).to(device)
return img
def cartoon_gan(input_image: str) -> np.ndarray:
"""
Generates a cartoon image using the trained Generator model.
Args:
input_image (str): Path to the input image.
Returns:
np.ndarray: The generated cartoon image.
"""
img = preprocess_image(input_image, device)
result_image_checkpoint = G_inference(img)
cartoon = np.transpose(result_image_checkpoint[0].cpu().detach().numpy(), (1, 2, 0))
return cartoon
def create_gradio_interface() -> gr.Interface:
"""
Creates the Gradio interface for the Cartoon GAN.
Returns:
gr.Interface: The Gradio interface.
"""
return gr.Interface(fn=cartoon_gan, inputs=gr.Image(type='filepath'), outputs="image", title="Cartoon GAN")
def cartoongan_inference() -> None:
"""
Main function to load the model, create the Gradio interface, and launch it.
"""
global device, G_inference
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
checkpoint_path = os.path.join(os.getcwd(), 'best_checkpoints', 'cartoongan', 'model_3_checkpoint_ep220.pth')
G_inference = load_checkpoint(checkpoint_path, device)
cartoon_gan_interface = create_gradio_interface()
cartoon_gan_interface.launch(share=True)
if __name__ == "__main__":
gan = CartoonGAN()
losses, validation_losses = gan.train(1, 'checkpoints')
plot_loss_curves(losses, validation_losses)